scispace - formally typeset
Open AccessJournal ArticleDOI

Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold

TLDR
The method combines optically transparent contoured surfaces with self-assembled monolayers of alkanethiolates on gold to control interfacial characteristics; these tailored interfaces, in turn, control the adsorption of proteins and the attachment of cells.
Abstract
This paper describes a method based on experimentally simple techniques--microcontact printing and micromolding in capillaries--to prepare tissue culture substrates in which both the topology and molecular structure of the interface can be controlled. The method combines optically transparent contoured surfaces with self-assembled monolayers (SAMs) of alkanethiolates on gold to control interfacial characteristics; these tailored interfaces, in turn, control the adsorption of proteins and the attachment of cells. The technique uses replica molding in poly(dimethylsiloxane) molds having micrometer-scale relief patterns on their surfaces to form a contoured film of polyurethane supported on a glass slide. Evaporation of a thin (< 12 nm) film of gold on this surface-contoured polyurethane provides an optically transparent substrate, on which SAMs of terminally functionalized alkanethiolates can be formed. In one procedure, a flat poly(dimethylsiloxane) stamp was used to form a SAM of hexadecanethiolate on the raised plateaus of the contoured surface by contact printing hexadecanethiol [HS(CH2)15CH3]; a SAM terminated in tri(ethylene glycol) groups was subsequently formed on the bare gold remaining in the grooves by immersing the substrate in a solution of a second alkanethiol [HS(CH2)11(OCH2CH2)3OH]. Then this patterned substrate was immersed in a solution of fibronectin, the protein adsorbed only on the methyl-terminated plateau regions of the substrate [the tri(ethylene glycol)-terminated regions resisted the adsorption of protein]; bovine capillary endothelial cells attached only on the regions that adsorbed fibronectin. A complementary procedure confined protein adsorption and cell attachment to the grooves in this substrate.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology†

TL;DR: This work highlights recent developments in engineering uncrosslinked and crosslinked hydrophilic polymers for biomedical and biological applications and shows how such systems' intelligent behavior can be used in sensors, microarrays, and imaging.
Journal ArticleDOI

Soft Lithography in Biology and Biochemistry

TL;DR: Soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and topattern and manipulate cells.
Patent

High throughput screen

TL;DR: In this paper, a high throughput screen for determining the effect of test compounds on ion channel or transporter activity was proposed, and a method for monitoring ion channel activity in a membrane.
Journal ArticleDOI

Patterning proteins and cells using soft lithography

TL;DR: This review describes the pattering of proteins and cells using a non-photolithographic microfabrication technology, which consists of a set of related techniques, each of which uses stamps or channels fabricated in an elastomeric ('soft') material for pattern transfer.
References
More filters
Related Papers (5)