scispace - formally typeset
Journal ArticleDOI

Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media

R. A. Schapery
- 01 Jul 1984 - 
- Vol. 25, Iss: 3, pp 195-223
Reads0
Chats0
TLDR
In this paper, a quasi-static deformation and fracture analysis for nonlinear viscoelastic media and sample applications are given. But the authors focus on predicting mechanical work available at the crack tip for initiation and continuation of growth.
Abstract
Methods of quasi-static deformation and fracture analysis are developed for a class of nonlinear viscoelastic media and sample applications are given. Selection of the class of media is guided by actual rheological behavior of monolithic and composite materials as well as the need for simplicity to be able to understand the effect of primary material and continuum parameters on crack growth behavior. First, pertinent aspects of J integral and energy release rate theory for nonlinear elastic media are discussed. Nonlinear viscoelastic constitutive equations are then given, and correspondence principles which establish a simple relationship between mechanical states of elastic and viscoelastic media are developed. These principles provide the basis for the subsequent extension of J integral theory to crack growth in viscoelastic materials. Emphasis is on predicting mechanical work available at the crack tip for initiation and continuation of growth; some examples show how viscoelastic properties and the J integral affect growth behavior. Included is the problem of a crack in a thin layer having different viscoelastic properties than the surrounding continuum. The Appendix gives an apparently new constitutive theory for elastic and viscoelastic materials with changing microstructure (e.g. distributed damage) and indicates the conditions under which the fracture theory in the body of the paper is applicable.

read more

Citations
More filters
Journal ArticleDOI

Effect of long-term aging on the fatigue properties of aramid fibres reinforced asphalt mixture

TL;DR: In this paper , the impact of aging on the cracking of aramid fiber-reinforced asphalt mixes (AFM) using the simplified viscoelastic continuum damage (S-VECD) theory was investigated.

Modeling static creep with stress reversals of mastic asphalt.

Romel Tigabu
TL;DR: In this paper, the authors studied the strain response of mastic asphalt to arbitrary tension, arbitrary compression, alternating tension/compression, loading, zigzag loading and sinusoidal loading.
Journal ArticleDOI

Analysis of fractures in linear viscoelastic media using a generalized finite element method and the elastic-viscoelastic correspondence principle

TL;DR: In this article , a methodology for an efficient analysis of 3D fracture mechanics problems in linear viscoelastic media is presented, which combines the Elastic-Viscoelastic Correspondence Principle (EVCP), a Generalized Finite Element Method (GFEM), and an inverse Laplace transform (ILT) method to compute Energy Release Rate (ERR) and Crack Mouth Opening Displacement (CMOD) for visco-elastic fracture problems in the time domain.
Journal ArticleDOI

Visco-plastic analysis of adhesively bonded joints in composite materials

TL;DR: In this paper, a finite element code is developed and visco-plastic analyses of adhesively bonded joints are carried out for single lap, stepped lap, and double lap joints are considered for the analyses.
References
More filters
Journal ArticleDOI

A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks

TL;DR: In this paper, an integral is exhibited which has the same value for all paths surrounding a class of notches in two-dimensional deformation fields of linear or non-linear elastic materials.
Book

Introduction to the mechanics of a continuous medium

TL;DR: In this article, the authors propose a linearized theory of elasticity for tensors, which they call Linearized Theory of Elasticity (LTHE), which is based on tensors and elasticity.
Journal ArticleDOI

On a class of conservation laws in linearized and finite elastostatics

TL;DR: In this article, ESHELBY deduced a surface-integral representation for the force on an elastic singularity or inhomogeneity, which gives rise to a conservation law for regular elastostatic fields appropriate to homogeneous but not necessarily isotropic solids in the presence of infinitesimal deformations.
Related Papers (5)