scispace - formally typeset
Open AccessProceedings Article

Deep Canonical Correlation Analysis

TLDR
DCCA is introduced, a method to learn complex nonlinear transformations of two views of data such that the resulting representations are highly linearly correlated and Parameters of both transformations are jointly learned to maximize the (regularized) total correlation.
Abstract
We introduce Deep Canonical Correlation Analysis (DCCA), a method to learn complex nonlinear transformations of two views of data such that the resulting representations are highly linearly correlated. Parameters of both transformations are jointly learned to maximize the (regularized) total correlation. It can be viewed as a nonlinear extension of the linear method canonical correlation analysis (CCA). It is an alternative to the nonparametric method kernel canonical correlation analysis (KCCA) for learning correlated nonlinear transformations. Unlike KCCA, DCCA does not require an inner product, and has the advantages of a parametric method: training time scales well with data size and the training data need not be referenced when computing the representations of unseen instances. In experiments on two real-world datasets, we find that DCCA learns representations with significantly higher correlation than those learned by CCA and KCCA. We also introduce a novel non-saturating sigmoid function based on the cube root that may be useful more generally in feedforward neural networks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Learning structured output representation using deep conditional generative models

TL;DR: A deep conditional generative model for structured output prediction using Gaussian latent variables is developed, trained efficiently in the framework of stochastic gradient variational Bayes, and allows for fast prediction using Stochastic feed-forward inference.
Journal ArticleDOI

Multimodal Machine Learning: A Survey and Taxonomy

TL;DR: This paper surveys the recent advances in multimodal machine learning itself and presents them in a common taxonomy to enable researchers to better understand the state of the field and identify directions for future research.
Journal ArticleDOI

Grounded Compositional Semantics for Finding and Describing Images with Sentences

TL;DR: The DT-RNN model, which uses dependency trees to embed sentences into a vector space in order to retrieve images that are described by those sentences, outperform other recursive and recurrent neural networks, kernelized CCA and a bag-of-words baseline on the tasks of finding an image that fits a sentence description and vice versa.
Journal ArticleDOI

Multi-view learning overview

TL;DR: This overview reviews theoretical underpinnings of multi-view learning and attempts to identify promising venues and point out some specific challenges which can hopefully promote further research in this rapidly developing field.
Proceedings ArticleDOI

Adversarial Cross-Modal Retrieval

TL;DR: Comprehensive experimental results show that the proposed ACMR method is superior in learning effective subspace representation and that it significantly outperforms the state-of-the-art cross-modal retrieval methods.
References
More filters
Book

Numerical Optimization

TL;DR: Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization, responding to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Proceedings ArticleDOI

Extracting and composing robust features with denoising autoencoders

TL;DR: This work introduces and motivate a new training principle for unsupervised learning of a representation based on the idea of making the learned representations robust to partial corruption of the input pattern.
Book ChapterDOI

Relations Between Two Sets of Variates

TL;DR: The concept of correlation and regression may be applied not only to ordinary one-dimensional variates but also to variates of two or more dimensions as discussed by the authors, where the correlation of the horizontal components is ordinarily discussed, whereas the complex consisting of horizontal and vertical deviations may be even more interesting.