scispace - formally typeset
Journal ArticleDOI

Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe

Reads0
Chats0
TLDR
In this article, the authors extend the application of the Z-scan experimental technique to determine free-carrier nonlinearities in the presence of bound electronic refraction and two-photon absorption.
Abstract
We extend the application of the Z-scan experimental technique to determine free-carrier nonlinearities in the presence of bound electronic refraction and two-photon absorption. We employ this method, using picosecond pulses in CdTe, GaAs, and ZnTe at 1.06 μm and in ZnSe at 1.06 and 0.53 μm, to measure the refractive-index change induced by two-photon-excited free carriers (coefficient σr,), the two-photon absorption coefficient β, and the bound electronic nonlinear refractive index n2. The real and imaginary parts of the third-order susceptibility (i.e., n2 and β, respectively) are determined by Z scans with low inputs, and the refraction from carriers generated by two-photon absorption (an effecitve fifth-order nonlinearity) is determined from Z scans with higher input energies. We compare our experimental results with theoretical models and deduce that the three measured parameters are well predicted by simple two-band models. n2 changes from positive to negative as the photon energy approaches the band edge, in accordance with a recent theory of the dispersion of n2 in solids based on Kramers–Kronig transformations [ Phys. Rev. Lett.65, 96 ( 1990); IEEE J. Quantum Electron.27, 1296 ( 1991)]. We find that the values of σr are in agreement with simple band-filling models.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphene photonics, plasmonics, and broadband optoelectronic devices.

TL;DR: The latest progress in graphene photonics, plasmonics, and broadband optoelectronic devices is reviewed, with particular emphasis on the ability to integrate graphenePhotonics onto the silicon platform to afford broadband operation in light routing and amplification.

Towards quantum superpositions of a mirror

TL;DR: An experiment for creating quantum superposition states involving of the order of 10(14) atoms via the interaction of a single photon with a tiny mirror using a combination of state-of-the-art technologies is proposed.
Journal ArticleDOI

Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution

TL;DR: In this article, the authors showed that the nonlinear optical response due to instantaneous two-photon absorption can be used to yield effective values of the relevant parameters of optical nonlinearity due to reverse saturable absorption.
Journal ArticleDOI

Design of high-energy terahertz sources based on optical rectification

TL;DR: It is shown that imaging errors in a pulse-front-tilting setup consisting of a grating and a lens can lead to a THz beam with strongly asymmetric intensity profile and strong divergence, thereby limiting applications and optimized setup parameters are given to reduce such distortions.
References
More filters
Journal ArticleDOI

Sensitive measurement of optical nonlinearities using a single beam

TL;DR: In this paper, a single-beam technique for measuring both the nonlinear refractive index and nonlinear absorption coefficient for a wide variety of materials is reported, including a comprehensive theoretical analysis.
Book

Linear systems

Journal ArticleDOI

Band structure of indium antimonide

TL;DR: The band structure of InSb is calculated using the k ·. p perturbation approach and assuming that the conduction and valence band extrema are at k = 0 as mentioned in this paper.
Journal ArticleDOI

High-sensitivity, single-beam n(2) measurements.

TL;DR: A simple yet highly sensitive single-beam experimental technique for the determination of both the sign and magnitude of n(2), where the sample is moved along the z direction of a focused Gaussian beam while the repetitively pulsed laser energy is held fixed.
Journal ArticleDOI

Dispersion of bound electron nonlinear refraction in solids

TL;DR: In this article, a two-hand model is used to calculate the scaling and spectrum of the nonlinear absorption of semiconductors and wide-gap optical solids, and the bound electronic nonlinear refractive index n/sub 2/ is obtained using a Kramers-Kronig transformation.
Related Papers (5)