scispace - formally typeset
Open AccessJournal ArticleDOI

Diet effects on urine composition of cattle and N2O emissions.

TLDR
Major dietary strategies to mitigating N2O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume.
Abstract
Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of urine deposition or manure application strongly influence N2O release. Major dietary strategies to mitigating N2O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume. For further reduction of N2O emission, an integrated animal nutrition and excreta management approach is required.

read more

Citations
More filters
Journal ArticleDOI

The potential effectiveness of four different options to reduce environmental impacts of grazed pastures. A model-based assessment

TL;DR: In this paper, the authors used a modelling approach to assess the effect of three plant traits and one management practice on N2O emissions, nitrogen (N) losses via leaching and NH3 volatilisation, pasture production and soil organic carbon (SOC) changes.
Journal ArticleDOI

Apparent Nitrogen Recovery in Milk and Early Dry Season Nitrous Oxide Emission Factors for Urine Deposited by Dual-Purpose Cattle on Different Soil Types

TL;DR: In this article, the authors used a closed static chamber technique to measure N2O emissions from soils in areas with and without urine patches (21 days in Atlantico and 35 days in Casanare).
Journal ArticleDOI

Balancing the dietary ratio of nitrogen to sulfur by adding inorganic sulfur improves nitrogen retention and consequently decreases urine nitrous oxide emissions in steers

TL;DR: In this paper, the effects of dietary supplementation with inorganic sulfur (S) on nitrogen (N) metabolism and nitrous oxide (N2O) emissions of urine from steers were investigated.
Journal ArticleDOI

Uncertainties in direct N2O emissions from grazing ruminant excreta (EF3PRP) in national greenhouse gas inventories

TL;DR: In this article , the authors highlight the uncertainties around the methods used to account for these emissions in their national GHG inventories, and discuss the efforts undertaken for considering factors of variation in the calculation of emissions.
Dissertation

Factors Affecting Flavor Quality of Bovine Milk and Dairy Products

TL;DR: Peterson et al. as mentioned in this paper presented a Ph.D. dissertation on food science at the University of Minnesota with a focus on food safety and food preservation, which was published in 2016.
References
More filters
Journal ArticleDOI

Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century

TL;DR: In this paper, the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances were compared, and it was shown that N 2O emission currently is the single most important ozone-destroying emission and is expected to remain the largest throughout the 21st century.
Journal Article

Nitrous oxide (N_2O) : the dominanat ozone-depleting substance emitted in the 21st century

A. R. Ravishankara
- 01 Jan 2009 - 
TL;DR: Nitrous oxide emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century, and N2O is unregulated by the Montreal Protocol, which would enhance the recovery of the ozone layer from its depleted state and reduce the anthropogenic forcing of the climate system.
Journal ArticleDOI

Role of nitrifier denitrification in the production of nitrous oxide

TL;DR: In this article, the authors present knowledge about Nitrifier denitrification is summarized in order to give an exact definition, to spread awareness of its pathway and controlling factors and to identify areas of research needed to improve global N 2 O budgets.
Journal ArticleDOI

Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle

TL;DR: In this article, the authors presented a methodology to calculate annual country level N2O emissions from agricultural soils, including direct emissions from agriculture, indirect emissions from animal production, and indirect emissions indirectly induced by agricultural activities.
Journal ArticleDOI

Nutrition Management of Dairy Cows as a Contribution to Pollution Control

TL;DR: In order to exploit fully the potential of nutritional management in pollution control, computer simulation models describing dairy production in a dynamic way are needed.
Related Papers (5)