scispace - formally typeset
Open AccessProceedings ArticleDOI

Do We Need More Training Data or Better Models for Object Detection

Reads0
Chats0
TLDR
Surprisingly, the performance of problem domain-agnostic mixture models appears to saturate quickly, and there is still room to improve performance with linear classifiers and the existing feature space by improved representations and learning algorithms.
Abstract
Datasets for training object recognition systems are steadily growing in size. This paper investigates the question of whether existing detectors will continue to improve as data grows, or if models are close to saturating due to limited model complexity and the Bayes risk associated with the feature spaces in which they operate. We focus on the popular paradigm of scanning-window templates defined on oriented gradient features, trained with discriminative classifiers. We investigate the performance of mixtures of templates as a function of the number of templates (complexity) and the amount of training data. We find that additional data does help, but only with correct regularization and treatment of noisy examples or “outliers” in the training data. Surprisingly, the performance of problem domain-agnostic mixture models appears to saturate quickly (∼10 templates and ∼100 positive training examples per template). However, compositional mixtures (implemented via composed parts) give much better performance because they share parameters among templates, and can synthesize new templates not encountered during training. This suggests there is still room to improve performance with linear classifiers and the existing feature space by improved representations and learning algorithms.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Microsoft COCO: Common Objects in Context

TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Proceedings ArticleDOI

Fast R-CNN

TL;DR: Fast R-CNN as discussed by the authors proposes a Fast Region-based Convolutional Network method for object detection, which employs several innovations to improve training and testing speed while also increasing detection accuracy and achieves a higher mAP on PASCAL VOC 2012.
Posted Content

Fast R-CNN

TL;DR: This paper proposes a Fast Region-based Convolutional Network method (Fast R-CNN) for object detection that builds on previous work to efficiently classify object proposals using deep convolutional networks.
Posted Content

Rich feature hierarchies for accurate object detection and semantic segmentation

TL;DR: This paper proposes a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%.
References
More filters
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Journal ArticleDOI

The Pascal Visual Object Classes (VOC) Challenge

TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Journal ArticleDOI

Object Detection with Discriminatively Trained Part-Based Models

TL;DR: An object detection system based on mixtures of multiscale deformable part models that is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges is described.
Proceedings ArticleDOI

Unbiased look at dataset bias

TL;DR: A comparison study using a set of popular datasets, evaluated based on a number of criteria including: relative data bias, cross-dataset generalization, effects of closed-world assumption, and sample value is presented.
Proceedings ArticleDOI

Face detection, pose estimation, and landmark localization in the wild

TL;DR: It is shown that tree-structured models are surprisingly effective at capturing global elastic deformation, while being easy to optimize unlike dense graph structures, in real-world, cluttered images.
Related Papers (5)