scispace - formally typeset
Open AccessPosted Content

Dynamic Inference with Neural Interpreters

TLDR
Neural interpreters as mentioned in this paper factorizes inference in a self-attention network as a system of modules, which are called ''functions'' and are routed through a sequence of functions in a way that is end-to-end learned.
Abstract
Modern neural network architectures can leverage large amounts of data to generalize well within the training distribution. However, they are less capable of systematic generalization to data drawn from unseen but related distributions, a feat that is hypothesized to require compositional reasoning and reuse of knowledge. In this work, we present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules, which we call \emph{functions}. Inputs to the model are routed through a sequence of functions in a way that is end-to-end learned. The proposed architecture can flexibly compose computation along width and depth, and lends itself well to capacity extension after training. To demonstrate the versatility of Neural Interpreters, we evaluate it in two distinct settings: image classification and visual abstract reasoning on Raven Progressive Matrices. In the former, we show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner. In the latter, we find that Neural Interpreters are competitive with respect to the state-of-the-art in terms of systematic generalization

read more

References
More filters
Proceedings Article

Attention is All you Need

TL;DR: This paper proposed a simple network architecture based solely on an attention mechanism, dispensing with recurrence and convolutions entirely and achieved state-of-the-art performance on English-to-French translation.
Proceedings ArticleDOI

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Posted Content

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

TL;DR: Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.

Reading Digits in Natural Images with Unsupervised Feature Learning

TL;DR: A new benchmark dataset for research use is introduced containing over 600,000 labeled digits cropped from Street View images, and variants of two recently proposed unsupervised feature learning methods are employed, finding that they are convincingly superior on benchmarks.
Proceedings Article

Dynamic Routing Between Capsules

TL;DR: It is shown that a discrimininatively trained, multi-layer capsule system achieves state-of-the-art performance on MNIST and is considerably better than a convolutional net at recognizing highly overlapping digits.