scispace - formally typeset
Open AccessJournal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

Heng Li, +1 more
- 01 Jul 2009 - 
- Vol. 25, Iss: 14, pp 1754-1760
TLDR
Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract
Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Trimmomatic: a flexible trimmer for Illumina sequence data

TL;DR: Timmomatic is developed as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data and is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested.
Journal ArticleDOI

Fast gapped-read alignment with Bowtie 2

TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
Journal ArticleDOI

The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data

TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Journal ArticleDOI

Cutadapt removes adapter sequences from high-throughput sequencing reads

TL;DR: The command-line tool cutadapt is developed, which supports 454, Illumina and SOLiD (color space) data, offers two adapter trimming algorithms, and has other useful features.
Journal ArticleDOI

featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features

TL;DR: FeatureCounts as discussed by the authors is a read summarization program suitable for counting reads generated from either RNA or genomic DNA sequencing experiments, which implements highly efficient chromosome hashing and feature blocking techniques.
References
More filters
Journal ArticleDOI

MOM: maximum oligonucleotide mapping.

TL;DR: This work has developed a program, Maximum Oligonucleotide Mapping (MOM), based on the concept of query matching that is designed to capture a maximal length match within the short read satisfying the user defined error parameters.
Journal ArticleDOI

ProbeMatch: rapid alignment of oligonucleotides to genome allowing both gaps and mismatches

TL;DR: ProbMatch has been used to align 169,095 Illumina GAII reads against the human genome, which could not be mapped by ELAND, and found alignments for 28,625 reads of the 169,000 reads in less than 3 h.
Related Papers (5)