scispace - formally typeset
Open AccessJournal Article

Fast numerical methods for stochastic computations: A review

TLDR
This paper presents a review of the current state-of-the-art of numerical methods for stochastic computations, with a particular emphasis on those based on generalized polynomial chaos (gPC) methodology.
Abstract
This paper presents a review of the current state-of-the-art of numerical methods for stochastic computations. The focus is on efficient high-order methods suitable for practical applications, with a particular emphasis on those based on generalized polynomial chaos (gPC) methodology. The framework of gPC is reviewed, along with its Galerkin and collocation approaches for solving stochastic equations. Properties of these methods are summarized by using results from literature. This paper also attempts to present the gPC based methods in a unified framework based on an extension of the classical spectral methods into multi-dimensional random spaces. AMS subject classifications: 41A10, 60H35, 65C30, 65C50

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Stochastic Differential Equations

TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Journal ArticleDOI

Adaptive sparse polynomial chaos expansion based on least angle regression

TL;DR: A non intrusive method that builds a sparse PC expansion, which may be obtained at a reduced computational cost compared to the classical ''full'' PC approximation.
Journal ArticleDOI

Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization

TL;DR: In many situations across computational science and engineering, multiple computational models are available that describe a system of interest as discussed by the authors, and these different models have varying evaluation costs, i.e.
Journal ArticleDOI

Simulation-based optimal Bayesian experimental design for nonlinear systems

TL;DR: This work proposes a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models, and focuses on finding sets of experiments that provide the most information about targeted sets of parameters.
Journal ArticleDOI

Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs

TL;DR: Partial differential equations with random input data, such as random loadings and coefficients, are reformulated as parametric, deterministic PDEs on parameter spaces of high, possibly infinite dimension to derive representation of the random solutions' laws on infinite-dimensional parameter spaces in terms of ‘generalized polynomial chaos’ (GPC) series.
References
More filters
Book

Brownian Motion and Stochastic Calculus

TL;DR: In this paper, the authors present a characterization of continuous local martingales with respect to Brownian motion in terms of Markov properties, including the strong Markov property, and a generalized version of the Ito rule.
Book

Numerical Solution of Stochastic Differential Equations

TL;DR: In this article, a time-discrete approximation of deterministic Differential Equations is proposed for the stochastic calculus, based on Strong Taylor Expansions and Strong Taylor Approximations.
Book

Probability theory

Michel Loève
TL;DR: These notes cover the basic definitions of discrete probability theory, and then present some results including Bayes' rule, inclusion-exclusion formula, Chebyshev's inequality, and the weak law of large numbers.
Book

Stochastic Finite Elements: A Spectral Approach

TL;DR: In this article, a representation of stochastic processes and response statistics are represented by finite element method and response representation, respectively, and numerical examples are provided for each of them.
Journal ArticleDOI

Stochastic differential equations : an introduction with applications

TL;DR: Some Mathematical Preliminaries as mentioned in this paper include the Ito Integrals, Ito Formula and the Martingale Representation Theorem, and Stochastic Differential Equations.
Related Papers (5)