scispace - formally typeset
Open AccessJournal ArticleDOI

Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States

Richard H. Sibson
- 01 Feb 1982 - 
- Vol. 72, Iss: 1, pp 151-163
Reads0
Chats0
TLDR
In this article, the authors show that the maximum depth of microseismic activity in various heat flow provinces of the conterminous United States generally correlates well with the frictional to quasi-plastic transition modeled for the different geotherms.
Abstract
Models of fault zones in continental crust, based on the analysis of rock deformation textures, suggest that the depth of seismic activity is controlled by the passage from a pressure-sensitive, dominantly frictional regime to strongly temperature-dependent, quasi-plastic mylonitization at greenschist and higher grades of metamorphism. Sufficient knowledge now exists concerning the frictional and rheological properties of quartz-bearing rocks to construct crude strength-depth curves for different geotherms. In such models, shear resistance peaks sharply at the inferred seismic-aseismic transition. The maximum depth of microseismic activity in various heat flow provinces of the conterminous United States generally correlates well with the frictional to quasi-plastic transition modeled for the different geotherms. Larger earthquakes ( M L > 5.5) also tend to nucleate near the base of the seismogenic zone. This region is postulated to have the highest concentration of distortional strain energy for stress levels at failure, and can be regarded as the prime asperity in crustal fault zones.

read more

Citations
More filters
Book

The Mechanics of Earthquakes and Faulting

TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Journal ArticleDOI

Earthquakes and friction laws

TL;DR: The traditional view of tectonics is that the lithosphere comprises a strong brittle layer overlying a weak ductile layer, which gives rise to two forms of deformation: brittle fracture, accompanied by earth-quakes, in the upper layer, and aseismic ductile flow in the layer beneath as mentioned in this paper.
Journal ArticleDOI

Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon

TL;DR: For example, Hou et al. as mentioned in this paper show that a small increase in the mean elevation of the Tibetan Plateau of 1000 m or more in a few million years is required by abrupt tectonic and environmental changes in Asia and the Indian Ocean.
Journal ArticleDOI

Strength of the lithosphere: Constraints imposed by laboratory experiments

TL;DR: The concept of strength envelopes, developed in the 1970s, allowed quantitative predictions of the strength of the lithosphere based on experimentally determined constitutive equations as mentioned in this paper, which can be applied to understand a broad range of topical problems in regional and global tectonics both on the Earth and on other planetary bodies.
Journal ArticleDOI

Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan

TL;DR: In this paper, the authors used 80 new fault plane solutions, combined with satellite imagery as well as both modern and historical observations of earthquake faulting, to investigate the active tectonics of the Middle East between western Turkey and Pakistan.
References
More filters
Journal ArticleDOI

Friction of Rocks

TL;DR: This paper showed that at low normal stress the shear stress required to slide one rock over another varies widely between experiments and at high normal stress that effect is diminished and the friction is nearly independent of rock type.
Journal ArticleDOI

Fault rocks and fault mechanisms

TL;DR: In this paper, physical factors likely to affect the genesis of the various fault rocks are examined in relation to the energy budget of fault zones, the main velocity modes of faulting and the type of fault, whether thrust, wrench, or normal.
Journal ArticleDOI

Limits on lithospheric stress imposed by laboratory experiments

TL;DR: Byerlee's law, converted to maximum or minimum stress, is a good upper or lower bound to observed in situ stresses to 5 km, for pore pressure hydrostatic or subhydrostatic as discussed by the authors.
Journal ArticleDOI

The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes

TL;DR: In this paper, the frequency-magnitude relation of microfracture deformation was studied and the dependence of the parameter b on rock type, stress, and confining pressure was found to depend primarily on stress.
Journal ArticleDOI

The dynamics of faulting

TL;DR: In this paper, it is shown mathematically that any system of forces, acting within a rock which for the time being is in equilibrium, resolves itself at any particular point into three pressures or tensions (or both combined), acting across three planes which are at right angles to one another.
Related Papers (5)