scispace - formally typeset
Open AccessJournal ArticleDOI

Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

TLDR
This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation, and presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions.
Abstract
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the $k$ dominant components of the singular value decomposition of an $m \times n$ matrix. (i) For a dense input matrix, randomized algorithms require $\bigO(mn \log(k))$ floating-point operations (flops) in contrast to $ \bigO(mnk)$ for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to $\bigO(k)$ passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Exact matrix completion via convex optimization

TL;DR: In this paper, a convex programming problem is used to find the matrix with the minimum nuclear norm that is consistent with the observed entries in a low-rank matrix, which is then used to recover all the missing entries from most sufficiently large subsets.
Journal ArticleDOI

User-Friendly Tail Bounds for Sums of Random Matrices

TL;DR: This paper presents new probability inequalities for sums of independent, random, self-adjoint matrices and provides noncommutative generalizations of the classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff, Hoeffding, and McDiarmid.
Journal ArticleDOI

Ising formulations of many NP problems

TL;DR: This work collects and extends mappings to the Ising model from partitioning, covering and satisfiability, and provides Ising formulations for many NP-complete and NP-hard problems, including all of Karp's 21NP-complete problems.
Journal ArticleDOI

Modal Analysis of Fluid Flows: An Overview

TL;DR: The intent of this document is to provide an introduction to modal analysis that is accessible to the larger fluid dynamics community and presents a brief overview of several of the well-established techniques.
Journal ArticleDOI

RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images

TL;DR: This paper reduces this extremely challenging optimization problem to a sequence of convex programs that minimize the sum of l1-norm and nuclear norm of the two component matrices, which can be efficiently solved by scalable convex optimization techniques.
References
More filters
Book

Matrix computations

Gene H. Golub
Book

Matrix Analysis

TL;DR: In this article, the authors present results of both classic and recent matrix analyses using canonical forms as a unifying theme, and demonstrate their importance in a variety of applications, such as linear algebra and matrix theory.
Book

The Elements of Statistical Learning: Data Mining, Inference, and Prediction

TL;DR: In this paper, the authors describe the important ideas in these areas in a common conceptual framework, and the emphasis is on concepts rather than mathematics, with a liberal use of color graphics.
Book

Compressed sensing

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Trending Questions (1)
Is Matrix 4 a hit or flop?

(ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures.