scispace - formally typeset
Journal ArticleDOI

Fluid mechanics and rheology of dense suspensions

Jonathan J. Stickel, +1 more
- 31 Oct 2001 - 
- Vol. 37, Iss: 1, pp 129-149
TLDR
In this paper, the authors review the fluid mechanics and rheology of dense suspensions, emphasizing investigations of microstructure and total stress, and explore scaling theories and the development of constitutive equations.
Abstract
▪ Abstract We review the fluid mechanics and rheology of dense suspensions, emphasizing investigations of microstructure and total stress. “Dense” or “highly concentrated” suspensions are those in which the average particle separation distance is less than the particle radius. For these suspensions, multiple-body interactions as well as two-body lubrication play a significant role and the rheology is non-Newtonian. We include investigations of multimodal suspensions, but not those of suspensions with dominant nonhydrodynamic interactions. We consider results from both physical experiments and computer simulations and explore scaling theories and the development of constitutive equations.

read more

Citations
More filters
Journal ArticleDOI

Lattice-Boltzmann Method for Complex Flows

TL;DR: This work reviews many significant developments over the past decade of the lattice-Boltzmann method and discusses higherorder boundary conditions and the simulation of microchannel flow with finite Knudsen number.
Journal ArticleDOI

Flows of Dense Granular Media

TL;DR: In this article, the existence of a dense flow regime characterized by enduring contacts is discussed, and results from experiments and simulations in different configurations support a description in terms of a frictional visco-plastic constitutive law.
Journal ArticleDOI

The rheology of suspensions of solid particles

TL;DR: In this paper, the rheology of suspensions of monodisperse particles of varying aspect ratios, from oblate to prolate, and covering particle volume fractions from dilute to highly concentrated.
Journal ArticleDOI

Unifying suspension and granular rheology.

TL;DR: Dense suspension and granular media are unified under a common framework and the results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.
Journal ArticleDOI

The Physics of the Colloidal Glass Transition

TL;DR: A review of the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations, is given in this paper, where the authors describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing.
References
More filters
Journal ArticleDOI

Lattice boltzmann method for fluid flows

TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.
Journal ArticleDOI

Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics

Abstract: We present a novel method for simulating hydrodynamic phenomena. This particle-based method combines features from molecular dynamics and lattice-gas automata. It is shown theoretically as well as in simulations that a quantitative description of isothermal Navier-Stokes flow is obtained with relatively few particles. Computationally, the method is much faster than molecular dynamics, and the at same time it is much more flexible than lattice-gas automata schemes.
Book

Investigations on the theory of the Brownian movement

TL;DR: Alfaro et al. as discussed by the authors conservado en la Biblioteca del Campus de Mostoles de la Universidad Rey Juan Carlos (sign. 530.12 EIN INV).
Journal ArticleDOI

The effect of Brownian motion on the bulk stress in a suspension of spherical particles

TL;DR: In this article, the effect of Brownian motion on the probability density of the separation vector of rigid spherical particles in a dilute suspension is investigated and an explicit expression for this leading approximation is constructed in terms of hydrodynamic interactions between pairs of particles.
Related Papers (5)