scispace - formally typeset
Journal ArticleDOI

Formation constrained multi-agent control

TLDR
The main theorem states that under a bounded tracking error assumption, the method stabilizes the formation error and is illustrated by applying it to rigid body constrained motions, as well as to mobile manipulation.
Abstract
We propose a model independent coordination strategy for multi-agent formation control. The main theorem states that under a bounded tracking error assumption our method stabilizes the formation error. We illustrate the usefulness of the method by applying it to rigid body constrained motions, as well as to mobile manipulation.

read more

Citations
More filters
Journal ArticleDOI

Consensus and Cooperation in Networked Multi-Agent Systems

TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Journal ArticleDOI

Coverage control for mobile sensing networks

TL;DR: In this paper, the authors describe decentralized control laws for the coordination of multiple vehicles performing spatially distributed tasks, which are based on a gradient descent scheme applied to a class of decentralized utility functions that encode optimal coverage and sensing policies.
Journal ArticleDOI

Modeling and control of formations of nonholonomic mobile robots

TL;DR: This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory.
Journal ArticleDOI

Necessary and sufficient graphical conditions for formation control of unicycles

TL;DR: It is proved that formation stabilization to a point is feasible if and only if the sensor digraph has a globally reachable node.
Journal ArticleDOI

Stability analysis of swarms

TL;DR: It is shown that the individuals (autonomous agents or biological creatures) will form a cohesive swarm in a finite time and an explicit bound on the swarm size is obtained, which depends only on the parameters of the swarm model.
References
More filters
Book

Robot Motion Planning

TL;DR: This chapter discusses the configuration space of a Rigid Object, the challenges of dealing with uncertainty, and potential field methods for solving these problems.
Journal ArticleDOI

Behavior-based formation control for multirobot teams

TL;DR: New reactive behaviors that implement formations in multirobot teams are presented and evaluated and demonstrate the value of various types of formations in autonomous, human-led and communications-restricted applications, and their appropriateness in different types of task environments.
Book

Behavior-Based Robotics

TL;DR: Whence behaviour? animal behaviour robot behaviour behaviour based architectures representational issues for behavioural systems hybrid deliberative/rective architectures perceptual basis for behaviour-based control adaptive behaviour social behaviour fringe robotics - beyond behaviour.
BookDOI

Theory of Robot Control

TL;DR: In this paper, the authors propose a joint space control task space control for rigid manipulators and flexible manipulators with elastic joints and flexible links, as well as modeling and structural properties feedback linearization nonlinear feedback control.
Journal ArticleDOI

String stability of interconnected systems

TL;DR: The authors derive sufficient ("weak coupling") conditions which guarantee the asymptotic string stability of a class of interconnected systems and ensure that the states of all the subsystems are all uniformly bounded when a gradient-based parameter adaptation law is used.
Related Papers (5)