scispace - formally typeset
Journal ArticleDOI

Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges

Ayman El-Refaie
- 01 Jan 2010 - 
- Vol. 57, Iss: 1, pp 107-121
TLDR
This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, compared of interior versus surface PM machine, and various types of machines.
Abstract
Fractional-slot concentrated-winding (FSCW) synchronous permanent magnet (PM) machines have been gaining interest over the last few years. This is mainly due to the several advantages that this type of windings provides. These include high-power density, high efficiency, short end turns, high slot fill factor particularly when coupled with segmented stator structures, low cogging torque, flux-weakening capability, and fault tolerance. This paper is going to provide a thorough analysis of FSCW synchronous PM machines in terms of opportunities and challenges. This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, comparison of interior versus surface PM machines, and various types of machines. This paper will also provide a summary of the commercial applications that involve FSCW synchronous PM machines.

read more

Citations
More filters
Journal ArticleDOI

Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA)

TL;DR: The analysis suggests that the dual (or triple) three-phase PMAC motor drive may be a favored choice for general aerospace applications, striking a balance between necessary redundancy and undue complexity, while maintaining a balanced operation following a failure.
Journal ArticleDOI

Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application

TL;DR: A comparison between interior PM and surface-mounted PM (SPM) motors is carried out, in terms of performance at given inverter ratings, showing that the two motors have similar rated power but that the SPM motor has barely no overload capability, independently of the available inverter current.
Journal ArticleDOI

Analysis of Air-Gap Field Modulation and Magnetic Gearing Effects in Switched Flux Permanent Magnet Machines

TL;DR: In this paper, the authors analyzed the magnetic gearing effect in SFPM machines with different stator/rotor pole combinations, winding configurations, and stator lamination segment types by a simple magnetomotive force-permeance model, and validated by finite element (FE) analysis.
Journal ArticleDOI

2-D Exact Analytical Model for Surface-Mounted Permanent-Magnet Motors With Semi-Closed Slots

TL;DR: In this article, an analytical subdomain model is presented to compute the magnetic field distribution in surface-mounted permanent magnet motors with semi-closed slots, which accurately accounts for armature reaction magnetic field and mutual influence between the slots.
Journal ArticleDOI

Advanced High-Power-Density Interior Permanent Magnet Motor for Traction Applications

TL;DR: In this paper, the authors provide details of the design, analysis, and testing of an advanced interior permanent magnet (PM) machine that was developed to meet the FreedomCAR 2020 specifications.
References
More filters
Proceedings ArticleDOI

Performance evaluation of permanent magnet synchronous machines with concentrated and distributed windings including the effect of field-weakening

TL;DR: In this paper, the authors evaluate different concentrated fractional pitch winding designs in comparison to a distributed full pitch winding design with one slot per pole per phase as a reference, and the results of the machine performance comparisons are based on a comprehensive use of finite element analysis tools.
Proceedings ArticleDOI

New core structure and manufacturing method for high efficiency of permanent magnet motors

TL;DR: In this paper, a joint-lapped core structure was proposed for permanent magnet motors for compressors, which can be deformed into a suitable form to wind the motor and achieve a high space factor.
Proceedings ArticleDOI

Comparison of synchronous PM machine types for wide constant-power speed range operation

TL;DR: In this paper, a detailed comparison of the high-speed operating characteristics of four synchronous PM machines for applications that require wide speed ranges of constant power operation is presented, including surface PM machines with both distributed and fractional-slot concentrated windings.
Journal ArticleDOI

Effect of optimal torque control on rotor loss of fault tolerant permanent magnet brushless machines

TL;DR: This paper describes the optimal torque control strategy which has been adopted, and discusses its effect on the eddy-current loss in the permanent magnets of four-, five-, and six-phase fault-tolerant machines.
Proceedings ArticleDOI

Highly efficient brushless motor design for an air-conditioner of the next generation 42 V vehicle

TL;DR: In this paper, the optimal design of a high speed and high efficiency brushless motor for a compressor of the 42 V operated vehicle has been discussed in order to adapt to idling stop, air-conditioning compressors are required to be changed to electric-motor driven from gasoline engine driven.
Related Papers (5)