scispace - formally typeset
Journal ArticleDOI

Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges

Ayman El-Refaie
- 01 Jan 2010 - 
- Vol. 57, Iss: 1, pp 107-121
TLDR
This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, compared of interior versus surface PM machine, and various types of machines.
Abstract
Fractional-slot concentrated-winding (FSCW) synchronous permanent magnet (PM) machines have been gaining interest over the last few years. This is mainly due to the several advantages that this type of windings provides. These include high-power density, high efficiency, short end turns, high slot fill factor particularly when coupled with segmented stator structures, low cogging torque, flux-weakening capability, and fault tolerance. This paper is going to provide a thorough analysis of FSCW synchronous PM machines in terms of opportunities and challenges. This paper will cover the theory and design of FSCW synchronous PM machines, achieving high-power density, flux-weakening capability, comparison of single- versus double-layer windings, fault-tolerance rotor losses, parasitic effects, comparison of interior versus surface PM machines, and various types of machines. This paper will also provide a summary of the commercial applications that involve FSCW synchronous PM machines.

read more

Citations
More filters
Journal ArticleDOI

Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA)

TL;DR: The analysis suggests that the dual (or triple) three-phase PMAC motor drive may be a favored choice for general aerospace applications, striking a balance between necessary redundancy and undue complexity, while maintaining a balanced operation following a failure.
Journal ArticleDOI

Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application

TL;DR: A comparison between interior PM and surface-mounted PM (SPM) motors is carried out, in terms of performance at given inverter ratings, showing that the two motors have similar rated power but that the SPM motor has barely no overload capability, independently of the available inverter current.
Journal ArticleDOI

Analysis of Air-Gap Field Modulation and Magnetic Gearing Effects in Switched Flux Permanent Magnet Machines

TL;DR: In this paper, the authors analyzed the magnetic gearing effect in SFPM machines with different stator/rotor pole combinations, winding configurations, and stator lamination segment types by a simple magnetomotive force-permeance model, and validated by finite element (FE) analysis.
Journal ArticleDOI

2-D Exact Analytical Model for Surface-Mounted Permanent-Magnet Motors With Semi-Closed Slots

TL;DR: In this article, an analytical subdomain model is presented to compute the magnetic field distribution in surface-mounted permanent magnet motors with semi-closed slots, which accurately accounts for armature reaction magnetic field and mutual influence between the slots.
Journal ArticleDOI

Advanced High-Power-Density Interior Permanent Magnet Motor for Traction Applications

TL;DR: In this paper, the authors provide details of the design, analysis, and testing of an advanced interior permanent magnet (PM) machine that was developed to meet the FreedomCAR 2020 specifications.
References
More filters
Journal ArticleDOI

Fault-tolerant permanent magnet machine drives

TL;DR: In this article, the authors examined the use of permanent magnet machine drives in high performance, safety-critical applications and developed a modular approach to the drive, with each phase electrically, magnetically, thermally and physically independent of all others.
Proceedings ArticleDOI

Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications

TL;DR: In this article, a constant-parameter equivalent circuit model that neglects motor losses is used to determine the effects of direct and quadrature reactances and open-circuit voltage on the power capability of salient-pole permanent-magnet motors in variable-speed drive applications.
Journal ArticleDOI

Optimal flux weakening in surface PM machines using fractional-slot concentrated windings

TL;DR: In this article, a design approach for achieving optimal flux-weakening operation in surface permanent-magnet (SPM) synchronous machines by properly designing the machine's stator windings using concentrated, fractional-slot stators was presented.
Journal ArticleDOI

Rotor loss in permanent-magnet brushless AC machines

TL;DR: In this paper, an analytical model is developed to predict rotor-induced eddy currents in brushless AC machines, and to quantify the effectiveness of circumferentially segmenting the permanent magnets in reducing the rotor loss.
Proceedings ArticleDOI

Synthesis of high performance PM motors with concentrated windings

TL;DR: In this article, the authors present a synthesis of the structures of three-phase machines with concentrated windings, and a comparative analysis of the original and traditional structures is performed by using field calculation software.
Related Papers (5)