scispace - formally typeset
Open AccessProceedings Article

GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium

TLDR
In this paper, a two time-scale update rule (TTUR) was proposed for training GANs with stochastic gradient descent on arbitrary GAN loss functions, which has an individual learning rate for both the discriminator and the generator.
Abstract
Generative Adversarial Networks (GANs) excel at creating realistic images with complex models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the `Frechet Inception Distance'' (FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Denoising Diffusion Probabilistic Models

TL;DR: High quality image synthesis results are presented using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics, which naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding.
Posted Content

Analyzing and Improving the Image Quality of StyleGAN

TL;DR: This work redesigns the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images, and thereby redefines the state of the art in unconditional image modeling.
Proceedings ArticleDOI

Semantic Image Synthesis With Spatially-Adaptive Normalization

TL;DR: S spatially-adaptive normalization is proposed, a simple but effective layer for synthesizing photorealistic images given an input semantic layout that allows users to easily control the style and content of image synthesis results as well as create multi-modal results.
Posted Content

Self-Attention Generative Adversarial Networks

TL;DR: Self-Attention Generative Adversarial Network (SAGAN) as mentioned in this paper uses attention-driven, long-range dependency modeling for image generation tasks and achieves state-of-the-art results.
Proceedings ArticleDOI

Analyzing and Improving the Image Quality of StyleGAN

TL;DR: In this paper, the authors propose to redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images.
Related Papers (5)