scispace - formally typeset
Open AccessProceedings Article

Gaussian Processes for Regression

Reads0
Chats0
TLDR
This paper investigates the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations.
Abstract
The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Book

Gaussian Processes for Machine Learning

TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Book

Information Theory, Inference and Learning Algorithms

TL;DR: A fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Book

Learning Deep Architectures for AI

TL;DR: The motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer modelssuch as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks are discussed.
Journal Article

A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models

TL;DR: In this paper, the authors describe the EM algorithm for finding the parameters of a mixture of Gaussian densities and a hidden Markov model (HMM) for both discrete and Gaussian mixture observation models.
References
More filters
Book

Statistics for spatial data

TL;DR: In this paper, the authors present a survey of statistics for spatial data in the field of geostatistics, including spatial point patterns and point patterns modeling objects, using Lattice Data and spatial models on lattices.
Book

Spline models for observational data

Grace Wahba
TL;DR: In this paper, a theory and practice for the estimation of functions from noisy data on functionals is developed, where convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a number of problems within this framework.
Journal ArticleDOI

5. Statistics for Spatial Data

TL;DR: Cressie et al. as discussed by the authors presented the Statistics for Spatial Data (SDS) for the first time in 1991, and used it for the purpose of statistical analysis of spatial data.
Book

Bayesian learning for neural networks

TL;DR: Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods.
Journal ArticleDOI

Networks for approximation and learning

TL;DR: Regularization networks are mathematically related to the radial basis functions, mainly used for strict interpolation tasks as mentioned in this paper, and two extensions of the regularization approach are presented, along with the approach's corrections to splines, regularization, Bayes formulation, and clustering.