scispace - formally typeset
Open AccessProceedings Article

GPFS: A Shared-Disk File System for Large Computing Clusters

Frank B. Schmuck, +1 more
- pp 231-244
Reads0
Chats0
TLDR
GPFS is IBM's parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters, and discusses how distributed locking and recovery techniques were extended to scale to large clusters.
Abstract
GPFS is IBM's parallel, shared-disk file system for cluster computers, available on the RS/6000 SP parallel supercomputer and on Linux clusters. GPFS is used on many of the largest supercomputers in the world. GPFS was built on many of the ideas that were developed in the academic community over the last several years, particularly distributed locking and recovery technology. To date it has been a matter of conjecture how well these ideas scale. We have had the opportunity to test those limits in the context of a product that runs on the largest systems in existence. While in many cases existing ideas scaled well, new approaches were necessary in many key areas. This paper describes GPFS, and discusses how distributed locking and recovery techniques were extended to scale to large clusters.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Fault Tolerance and Recovery of Scientific Workflows on Computational Grids

TL;DR: Results from real usage scenarios in LEAD show that the failure rate of individual steps in workflows decreases from about 30% to 5% by using the design and implementation of two mechanisms for fault-tolerance and recovery for complex scientific workflows on computational grids.
Proceedings ArticleDOI

Scaling parallel I/O performance through I/O delegate and caching system

TL;DR: A portable MPI-IO layer is proposed where certain tasks, such as file caching, consistency control, and collective I/O optimization are delegated to a small set of compute nodes, collectively termed asI/O Delegate nodes, which alleviates the lock contention at I/o servers.

Ceph: reliable, scalable, and high-performance distributed storage

TL;DR: This dissertation shows that device intelligence can be leveraged to provide reliable, scalable, and high-performance file service in a dynamic cluster environment and presents a distributed metadata management architecture that provides excellent performance and scalability by adapting to highly variable system workloads while tolerating arbitrary node crashes.
Patent

Systems and methods for replicating data

TL;DR: In this article, a system facilitates the distribution and redistribution of chunks of data among multiple servers by identifying servers to store a replica of the data based on at least one of utilization of the servers and prior data distribution involving the servers, and failure correlation properties associated with the servers.
References
More filters
Book ChapterDOI

Notes on Data Base Operating Systems

Jim Gray
TL;DR: This paper is a compendium of data base management operating systems folklore and focuses on particular issues unique to the transaction management component especially locking and recovery.
Proceedings ArticleDOI

Petal: distributed virtual disks

TL;DR: The design, implementation, and performance of Petal is described, a system that attempts to approximate this ideal in practice through a novel combination of features.
Journal ArticleDOI

Extendible hashing—a fast access method for dynamic files

TL;DR: This work studies, by analysis and simulation, the performance of extendible hashing and indicates that it provides an attractive alternative to other access methods, such as balanced trees.
Proceedings ArticleDOI

Frangipani: a scalable distributed file system

TL;DR: Initial measurements indicate that Frangipani has excellent single-server performance and scales well as servers are added, and can be exported to untrusted machines using ordinary network file access protocols.
Proceedings Article

Scalability in the XFS file system

TL;DR: The architecture and design of a new file system, XFS, for Silicon Graphics' IRIX operating system is described, and the use of B+ trees in place of many of the more traditional linear file system structures are discussed.
Trending Questions (1)
What is GPAIS?

Not addressed in the paper.