scispace - formally typeset
Open AccessPosted Content

Guided Disentanglement in Generative Networks

TLDR
In this paper, a comprehensive method for disentangling physics-based traits in the translation, guiding the learning process with neural or physical models is presented, integrating adversarial estimation and genetic algorithms to correctly achieve disentanglement.
Abstract
Image-to-image translation (i2i) networks suffer from entanglement effects in presence of physics-related phenomena in target domain (such as occlusions, fog, etc), thus lowering the translation quality and variability. In this paper, we present a comprehensive method for disentangling physics-based traits in the translation, guiding the learning process with neural or physical models. For the latter, we integrate adversarial estimation and genetic algorithms to correctly achieve disentanglement. The results show our approach dramatically increase performances in many challenging scenarios for image translation.

read more

References
More filters
Proceedings ArticleDOI

Image-to-Image Translation with Conditional Adversarial Networks

TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Proceedings ArticleDOI

Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks

TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Proceedings ArticleDOI

Pyramid Scene Parsing Network

TL;DR: This paper exploits the capability of global context information by different-region-based context aggregation through the pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet) to produce good quality results on the scene parsing task.
Proceedings ArticleDOI

Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

TL;DR: This work combines existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and applies it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures.
Proceedings ArticleDOI

The Cityscapes Dataset for Semantic Urban Scene Understanding

TL;DR: This work introduces Cityscapes, a benchmark suite and large-scale dataset to train and test approaches for pixel-level and instance-level semantic labeling, and exceeds previous attempts in terms of dataset size, annotation richness, scene variability, and complexity.
Related Papers (5)