scispace - formally typeset
BookDOI

Highly conducting one-dimensional solids

Reads0
Chats0
TLDR
In this article, the authors present an approach to perturbation approach to Lattice Instabilities in Quasi-One-Dimensional Conductors (QODC) in the context of TTF-TCNQ.
Abstract
1 Introduction to Highly Conducting One-Dimensional Solids.- 1. Introduction.- 2. Some Preliminary Thoughts.- 3. Excitonic Superconductivity.- 4. TCNQ Salts and KCP.- 4.1. NMP-TCNQ.- 4.2. TTF-TCNQ.- 4.3. KCP.- 5. TTF-TCNQ and TSeF-TCNQ.- 5.1. Structural Transitions in TTF-TCNQ.- 5.2. Electromagnetic Properties of TTF-TCNQ.- 5.3. ESR and Alloys of TTF-TCNQ and TSeF-TCNQ.- 6. Theory.- 7. Some Concluding Thoughts.- References.- 2 X-Ray and Neutron Scattering from One-Dimensional Conductors.- 1. Introduction.- 1.1. Lattice Instabilities and Phonon Anomalies.- 1.2. X-Ray Diffuse Scattering.- 1.3. Neutron Scattering.- 2. Structural Studies of KCP and Related Platinum Chain Complexes.- 2.1. Structure and One-Dimensional Electrical Properties of KCP.- 2.2. X-Ray Diffuse Scattering from KCP.- 2.3. Neutron Scattering Studies of KCP.- 2.4. Study of Other Platinum Complexes.- 3. Structural Studies of Organic One-Dimensional Conductors.- 3.1. Structure and TTF-TCNQ Crystals.- 3.2. High-Temperature Precursor Scattering in TTF-TCNQ.- 3.3. The Modulated Phases of TTF-TCNQ.- 3.4. Spin Waves in TTF-TCNQ?.- 3.5. The Interpretation of the Sequence of Modulated Phases in TTF-TCNQ.- 3.6. Study of Other Organic One-Dimensional Conductors.- 4. Concluding Remarks.- References and Notes.- 3 Charge-Density Wave Phenomena in One-Dimensional Metals: TTF-TCNQ and Related Organic Conductors.- 1. Introduction.- 2. Strength of Interactions Bandwidth, Electron-Electron and Electron-Phonon Interactions.- 2.1. One-Electron Energies Band Structure.- 2.2. Electron-Electron Interactions: Nuclear Magnetic Resonance and Magnetic Susceptibility.- 2.3. Electron-Phonon Interaction.- 3. The Peierls Instability in TTF-TCNQ: Structural Aspects and Phonon Softening.- 4. The Pseudogap: Optical Properties.- 5. Electrical Conductivity.- 5.1. DC Measurements.- 5.2. Microwave Measurements.- 6. The Transition Region 38 K<TTc1.- 4.1. Transport Properties.- 4.2. Magnetic Properties.- 4.3. Phonon Anomalies.- 5. Metal-Semiconductor Phase Transition.- 5.1. Variation of Transition Temperature Tc1 with Alloying.- 5.2. Thermodynamics and Critical Behavior of the Metal-Semiconductor Phase Transition.- 6. Semiconducting Phase, T< Tc1.- 6.1. Transport Properties in the Semiconducting Phase.- 6.2. Magnetic Properties.- 6.3. Superlattices and Phonon Anomalies.- 7. Summary.- References and Notes.- 5 Perturbation Approach to Lattice Instabilities in Quasi-One-Dimensional Conductors.- 1. Introduction.- 2. The One-Dimensional Electron-Phonon System.- 3. Fluctuations in the One-Dimensional System.- 4. Effects of Interchain Coupling.- 5. Effects of Impurities.- References and Notes.- 6 Theory of the One-Dimensional Electron Gas.- 1. Basic Physics.- 1.1. Introduction.- 1.2. Phase Transitions and Long-Range Order.- 1.3. Mathematical Model.- 1.4. Strong Coupling.- 2. Spinless Fermions.- 2.1. Definition of the Continuum Limit.- 2.2. Boson Representations and the Free Energy.- 2.3. Boson Representations of Fermion Fields.- 2.4. Correlation Functions of the Interacting System.- 3. Large "On-Site" Interaction.- 3.1. Attractive Interaction.- 3.2. Repulsive Interaction.- 3.3. Correlation Functions.- 4. Continuum Limit-Energy Gaps.- 4.1. Separation of Charge and Spin Degrees of Freedom.- 4.2. Reduction to Spinless Fermions.- 4.3. Solution of the Spinless Fermion Problems.- 4.4. Correlation Functions.- 4.5. Relationship to Other Problems.- 5. Renormalization Group Method.- 5.1. Scaling Equations.- 5.2. Trajectories and Energy Scales.- 5.3. Low-Temperature Properties.- 5.4. Four-Particle Functions.- Appendix A: Some Results That Are Useful for Working with Boson Representations.- Appendix B: Anticommutation of Different Fermion Fields.- Appendix C: Charge-Density Wave Gap and CDW Correlations.- References.- 7 The Prospects of Excitonic Superconductivity.- 1. Introduction.- 2. The Nature of Superconductivity.- 2.1. Background.- 2.2. Phonon Mechanism.- 2.3. Limitation on Tc.- 2.4. Isotope Effect.- 2.5. Exciton Mechanism.- 3. Problems of Superconductivity Unique to the Exciton Mechanism.- 3.1. Exchange.- 3.2. Apparent Limitation on ???*.- 3.3 Vertex Corrections.- 3.4. Equation for Tc.- 3.5. The Kernel U(p, k).- 3.6. Effects of the Phonons on the Exciton Mechanism.- 4. Effects of Limited Dimensionality.- 4.1. Effects of Fluctuations.- 4.2. Types of Order in a One-Dimensional Electron Gas.- 4.3. Relevance of g-ology.- 4.4. Interchain Coupling.- 4.5. Localization and Impurities.- 4.6. Effects of Screening.- 5. Real Models.- 5.1. Model of a Filamentary Excitonic Superconductor.- 5.2. Discussion.- 6. Summary.- References.- 8 Recent Developments and Comments.- 1. Introduction.- 2. Nature of the Phase Transitions.- 2.1. Transition in KCP.- 2.2. Transitions in TCNQ Compounds.- 2.3. Transitions in TaS3, NbSe3.- 3. Coulomb Interactions and Magnetic Susceptibility.- 3.1. Limitations of the Hubbard Model.- 3.2. Magnetic Susceptibility.- 3.3. Problem of TTF-TCNQ.- 3.4. Properties of NMP-TCNQ.- 4. Collective Transport.- 4.1. Superconductivity and One-Dimensional Fluctuations.- 4.2. Dielectric Properties.- 4.3. Transport above Tc.- 4.4. Nonlinear Field Dependence of Conductivity.- 5. Concluding Comments.- References.- Author Index.

read more

Citations
More filters
Journal ArticleDOI

Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes

TL;DR: In this article, the authors discuss the development of a general approach to rational synthesis of crystalline nanowires of arbitrary composition, and illustrate solutions to these challenges with measurements of the atomic structure and electronic properties of carbon nanotubes.
Journal ArticleDOI

How to detect fluctuating stripes in the high-temperature superconductors

TL;DR: In this paper, the authors compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, where the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro phase separation.
Journal ArticleDOI

One-dimensional Fermi liquids

TL;DR: In this article, the authors review the progress in the theory of one-dimensional (ID) Fermi liquids which has occurred over the past decade and present a description of the low-energy properties of gapless 1D quantum systems can be based on the exactly solvable Luttinger model which incorporates these features, and whose correlation functions can be calculated.
Journal ArticleDOI

Electronic liquid-crystal phases of a doped Mott insulator

TL;DR: In this article, it was shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared to the ordered charge-density-wave coupling between stripes.
Related Papers (5)