scispace - formally typeset
Journal ArticleDOI

Iron–cobalt mixed oxide nanocatalysts: Heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications

Reads0
Chats0
TLDR
In this paper, a novel approach of using Fe-Co mixed oxide nanocatalysts for the heterogeneous activation of peroxymonosulfate (PMS) to generate sulfate radical-based advanced oxidation technologies (SR-AOTs) targeting the decomposition of 2,4-dichlorophenol, and especially focus on some synthesis parameters such as calcination temperature, Fe/Co contents, and TiO 2 support.
Abstract
Sulfate radical-based advanced oxidation technologies (SR-AOTs) are attracting considerable attention due to the high oxidizing ability of SRs to degrade organic pollutants in aqueous environments This study was carried out to respond to current concerns and challenges in SR-AOTs, including (i) need of heterogeneous activation of sulfate salts using transition metal oxides, (ii) nanoscaling of the metal oxide catalysts for high catalytic activity and promising properties with respect to leaching, and (iii) easy removal and recovery of the catalytic materials after their applications for water and wastewater treatments In this study, we report a novel approach of using Fe–Co mixed oxide nanocatalysts for the heterogeneous activation of peroxymonosulfate (PMS) to generate SRs targeting the decomposition of 2,4-dichlorophenol, and especially focus on some synthesis parameters such as calcination temperature, Fe/Co contents, and TiO 2 support The physicochemical properties of the catalysts were investigated using porosimetry, XRD, HR-TEM, H 2 -TPR, and XPS Ferromagnetic CoFe 2 O 4 composites formed by thermal oxidation of a mixed phase of Fe and Co exhibited significant implications for the efficient and environmentally friendly activation of PMS, including (i) the cobalt species in CoFe 2 O 4 are of Co(II), unlike Co 3 O 4 showing some detrimental effects of Co(III) on the PMS activation, (ii) CoFe 2 O 4 possesses suppressed Co leaching properties due to strong Fe–Co interactions (ie Fe–Co linkages), and (iii) Fe–Co catalysts in form of CoFe 2 O 4 are easier to recover due to the unique ferromagnetic nature of CoFe 2 O 4 In addition, the presence of Fe was found to be beneficial for enriching hydroxyl group content on the Fe–Co catalyst surface, which is believed to facilitate the formation of Co(II)-OH complexes that are vital for heterogeneous PMS activation

read more

Citations
More filters
Journal ArticleDOI

Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects

TL;DR: In this paper, the authors provide a state-of-the-art review on the development in heterogeneous catalysts including single metal, mixed metal, and nonmetal carbon catalysts for organic contaminants removal, with particular focus on peroxymonosulfate (PMS) activation.
Journal ArticleDOI

Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review

TL;DR: A literature review on environmental application of peroxymonosulfate (PMS) in degradation of contaminants to clarify the performance of PMS is carried out in this paper, which describes the PMS usage in remediation of environmental pollutants with focus on the different methods of activation and the effect of main operational parameters on PMS-based processes.
Journal ArticleDOI

Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications

TL;DR: In this paper, the state-of-the-art progress on various heterogeneous cobalt-based catalysts for sulfate radical-based advanced oxidation processes (SR-AOPs) is reviewed.
Journal ArticleDOI

Chemistry of persulfates in water and wastewater treatment: A review

TL;DR: In this paper, the authors provide an overview of various methods for analysis of persulfate decontamination and their analysis is often prone for interference by other matrix components and hampered by the low stability of peroxydisulfate and peroxymonosulfate in aqueous systems.
Journal ArticleDOI

Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable CuFe2O4 Spinel in Water: Efficiency, Stability, and Mechanism

TL;DR: In situ characterization of the oxide surface with ATR-FTIR and Raman during the PMS decomposition suggested that surface Cu(II)- Cu(III)-Cu(II) redox cycle was responsible for the efficient sulfate radical generation from PMS.
References
More filters
Journal ArticleDOI

Environmental Applications of Semiconductor Photocatalysis

TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Journal ArticleDOI

Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results

TL;DR: In this article, the authors focus on interfacial processes and summarize some of the operating principles of heterogeneous photocatalysis systems, including the electron transfer and energy transfer processes in photocatalytic reactions.
Journal ArticleDOI

Toxic Potential of Materials at the Nanolevel

TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Journal ArticleDOI

Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution

TL;DR: In this article, rate constants have been compiled for reactions of various inorganic radicals produced by radiolysis or photolysis, as well as by other chemical means in aqueous solutions.
Journal ArticleDOI

Radical generation by the interaction of transition metals with common oxidants.

TL;DR: Nine transition metals were tested for the activation of three oxidants and the generation of inorganic radical species such as sulfate, peroxymonosulfate, and hydroxyl radicals to postulate the rate-determining step of the redox reactions taking place when a metal is coupled with an oxidant in aqueous solution.
Related Papers (5)