scispace - formally typeset
Open AccessJournal ArticleDOI

Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks

TLDR
Zhang et al. as mentioned in this paper proposed a deep cascaded multitask framework that exploits the inherent correlation between detection and alignment to boost up their performance, which leverages a cascaded architecture with three stages of carefully designed deep convolutional networks to predict face and landmark location in a coarse-to-fine manner.
Abstract
Face detection and alignment in unconstrained environment are challenging due to various poses, illuminations, and occlusions. Recent studies show that deep learning approaches can achieve impressive performance on these two tasks. In this letter, we propose a deep cascaded multitask framework that exploits the inherent correlation between detection and alignment to boost up their performance. In particular, our framework leverages a cascaded architecture with three stages of carefully designed deep convolutional networks to predict face and landmark location in a coarse-to-fine manner. In addition, we propose a new online hard sample mining strategy that further improves the performance in practice. Our method achieves superior accuracy over the state-of-the-art techniques on the challenging face detection dataset and benchmark and WIDER FACE benchmarks for face detection, and annotated facial landmarks in the wild benchmark for face alignment, while keeps real-time performance.

read more

Citations
More filters
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Book ChapterDOI

A Discriminative Feature Learning Approach for Deep Face Recognition

TL;DR: This paper proposes a new supervision signal, called center loss, for face recognition task, which simultaneously learns a center for deep features of each class and penalizes the distances between the deep features and their corresponding class centers.
Journal ArticleDOI

Object Detection With Deep Learning: A Review

TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Proceedings ArticleDOI

VGGFace2: A Dataset for Recognising Faces across Pose and Age

TL;DR: VGGFace2 as discussed by the authors is a large-scale face dataset with 3.31 million images of 9131 subjects, with an average of 362.6 images for each subject.
Proceedings ArticleDOI

SphereFace: Deep Hypersphere Embedding for Face Recognition

TL;DR: In this paper, the angular softmax (A-softmax) loss was proposed to learn angularly discriminative features for deep face recognition under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal interclass distance under a suitably chosen metric space.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Robust Real-Time Face Detection

TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Posted Content

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Proceedings ArticleDOI

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

TL;DR: In this paper, a Parametric Rectified Linear Unit (PReLU) was proposed to improve model fitting with nearly zero extra computational cost and little overfitting risk, which achieved a 4.94% top-5 test error on ImageNet 2012 classification dataset.
Proceedings ArticleDOI

Robust real-time face detection

TL;DR: A new image representation called the “Integral Image” is introduced which allows the features used by the detector to be computed very quickly and a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions.
Related Papers (5)