scispace - formally typeset
Proceedings ArticleDOI

Joint Graph Decomposition & Node Labeling: Problem, Algorithms, Applications

TLDR
A combinatorial optimization problem whose feasible solutions define both a decomposition and a node labeling of a given graph, which offers a common mathematical abstraction of seemingly unrelated computer vision tasks, including instance-separating semantic segmentation, articulated human body pose estimation and multiple object tracking.
Abstract
We state a combinatorial optimization problem whose feasible solutions define both a decomposition and a node labeling of a given graph. This problem offers a common mathematical abstraction of seemingly unrelated computer vision tasks, including instance-separating semantic segmentation, articulated human body pose estimation and multiple object tracking. Conceptually, it generalizes the unconstrained integer quadratic program and the minimum cost lifted multicut problem, both of which are NP-hard. In order to find feasible solutions efficiently, we define two local search algorithms that converge monotonously to a local optimum, offering a feasible solution at any time. To demonstrate the effectiveness of these algorithms in tackling computer vision tasks, we apply them to instances of the problem that we construct from published data, using published algorithms. We report state-of-the-art application-specific accuracy in the three above-mentioned applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields

TL;DR: OpenPose as mentioned in this paper uses Part Affinity Fields (PAFs) to learn to associate body parts with individuals in the image, which achieves high accuracy and real-time performance.
Proceedings ArticleDOI

RMPE: Regional Multi-person Pose Estimation

TL;DR: In this paper, a regional multi-person pose estimation (RMPE) framework is proposed to facilitate pose estimation in the presence of inaccurate human bounding boxes, which achieves state-of-the-art performance on the MPII dataset.
Posted Content

OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

TL;DR: OpenPose is released, the first open-source realtime system for multi-person 2D pose detection, including body, foot, hand, and facial keypoints, and the first combined body and foot keypoint detector, based on an internal annotated foot dataset.
Book ChapterDOI

Recovering Accurate {3D} Human Pose in the Wild Using {IMUs} and a Moving Camera

TL;DR: This work proposes a method that combines a single hand-held camera and a set of Inertial Measurement Units (IMUs) attached at the body limbs to estimate accurate 3D poses in the wild and obtains an accuracy of 26 mm, which makes it accurate enough to serve as a benchmark for image-based 3D pose estimation in theWild.
Book ChapterDOI

PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model

TL;DR: In this article, a CNN is used to detect individual keypoints and predict their relative displacements, allowing them to group keypoints into person pose instances and then associate semantic person pixels with their corresponding person instance, delivering instance-level person segmentations.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Proceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Journal ArticleDOI

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

TL;DR: This work addresses the task of semantic image segmentation with Deep Learning and proposes atrous spatial pyramid pooling (ASPP), which is proposed to robustly segment objects at multiple scales, and improves the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models.
Proceedings ArticleDOI

Are we ready for autonomous driving? The KITTI vision benchmark suite

TL;DR: The autonomous driving platform is used to develop novel challenging benchmarks for the tasks of stereo, optical flow, visual odometry/SLAM and 3D object detection, revealing that methods ranking high on established datasets such as Middlebury perform below average when being moved outside the laboratory to the real world.
Related Papers (5)