scispace - formally typeset
Open AccessJournal ArticleDOI

Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

TLDR
In this article, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions.
About
This article is published in Progress in Energy and Combustion Science.The article was published on 2012-12-01 and is currently open access. It has received 396 citations till now. The article focuses on the topics: Combustion chamber & Combustor.

read more

Citations
More filters
Proceedings ArticleDOI

Inclusion of flame stretch and heat loss in LES combustion model

TL;DR: In this paper, the TECFLAM swirl burner is simulated with Large Eddy Simulation (LES) using ANSYS Fluent and the turbulent combustion is modelled using the Flamelet Generated Manifold (FGM) formulation both with an Extended Turbulent Flame Closure (ETFC) model to introduce the stretch and heat loss effects on the flame and with the standard Zimont’sTurbulent flame closure.
Dissertation

High-resolution numerical schemes for compressible flows and compressible two-phase flows

Qijie Li
TL;DR: Several high-resolution numerical schemes based on the Constrained Interpolation Profile Conservative Semi-Lagrangian (CIP-CSL), Essentially Non-Oscillatory (ENO), Weighted ENO, Weighted WENO, Boundary Variation Diminishing (BVD), and Tangent of Hyperbola for INterface Capturing (THINC) schemes have been proposed for compressible flows and compressible two-phase flows.
DissertationDOI

Large eddy simulation of premixed combustion using flamelets

Ivan Langella
TL;DR: In this paper, two models are identified, one based on an algebraic expression for the reaction rate of a progress variable and the assumption of fast chemistry, the other based on a database of unstrained flamelets in which reaction rates are stored and parametrised using a progress variables and its SGS variance, and their potentials are shown for a wide range of premixed combustion conditions of practical interest.
References
More filters
Journal ArticleDOI

General circulation experiments with the primitive equations

TL;DR: In this article, an extended period numerical integration of a baroclinic primitive equation model has been made for the simulation and the study of the dynamics of the atmosphere's general circulation, and the solution corresponding to external gravitational propagation is filtered by requiring the vertically integrated divergence to vanish identically.
Journal ArticleDOI

The numerical computation of turbulent flows

TL;DR: In this paper, the authors present a review of the applicability and applicability of numerical predictions of turbulent flow, and advocate that computational economy, range of applicability, and physical realism are best served by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ϵ, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour.
Book

An Introduction to Fluid Dynamics

TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Journal ArticleDOI

An Introduction to Fluid Dynamics. By G. K. Batchelor. Pp. 615. 75s. (Cambridge.)

TL;DR: In this paper, the Navier-Stokes equation is derived for an inviscid fluid, and a finite difference method is proposed to solve the Euler's equations for a fluid flow in 3D space.
Book

A First Course in Turbulence

TL;DR: In this paper, the authors present a reference record created on 2005-11-18, modified on 2016-08-08 and used for the analysis of turbulence and transport in the context of energie.