scispace - formally typeset
Open AccessJournal ArticleDOI

Learning equivalence classes of bayesian-network structures

David Maxwell Chickering
- 01 Mar 2002 - 
- Vol. 2, Iss: 3, pp 445-498
TLDR
In this paper, the authors consider using a score equivalent criterion in conjunction with a heuristic search algorithm to perform model selection or model averaging, and show that more sophisticated search algorithms are likely to benefit much more.
Abstract
Two Bayesian-network structures are said to be equivalent if the set of distributions that can be represented with one of those structures is identical to the set of distributions that can be represented with the other. Many scoring criteria that are used to learn Bayesian-network structures from data are score equivalent; that is, these criteria do not distinguish among networks that are equivalent. In this paper, we consider using a score equivalent criterion in conjunction with a heuristic search algorithm to perform model selection or model averaging. We argue that it is often appropriate to search among equivalence classes of network structures as opposed to the more common approach of searching among individual Bayesian-network structures. We describe a convenient graphical representation for an equivalence class of structures, and introduce a set of operators that can be applied to that representation by a search algorithm to move among equivalence classes. We show that our equivalence-class operators can be scored locally, and thus share the computational efficiency of traditional operators defined for individual structures. We show experimentally that a greedy model-selection algorithm using our representation yields slightly higher-scoring structures than the traditional approach without any additional time overhead, and we argue that more sophisticated search algorithms are likely to benefit much more.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Learning Bayesian Networks: The Combination of Knowledge and Statistical Data

TL;DR: In this article, a Bayesian approach for learning Bayesian networks from a combination of prior knowledge and statistical data is presented, which is derived from a set of assumptions made previously as well as the assumption of likelihood equivalence, which says that data should not help to discriminate network structures that represent the same assertions of conditional independence.

Dynamic bayesian networks: representation, inference and learning

TL;DR: This thesis will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in Dbns, and how to learn DBN models from sequential data.
Journal ArticleDOI

The max-min hill-climbing Bayesian network structure learning algorithm

TL;DR: The first empirical results simultaneously comparing most of the major Bayesian network algorithms against each other are presented, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search.

A Tutorial on Learning Bayesian Networks

TL;DR: In this paper, the authors examine a graphical representation of uncertain knowledge called a Bayesian network, which is easy to construct and interpret, yet has formal probabilistic semantics making it suitable for statistical manipulation.
Journal ArticleDOI

Optimal structure identification with greedy search

TL;DR: This paper proves the so-called "Meek Conjecture", which shows that if a DAG H is an independence map of another DAG G, then there exists a finite sequence of edge additions and covered edge reversals in G such that H remains anindependence map of G and after all modifications G =H.
References
More filters
Journal ArticleDOI

A new look at the statistical model identification

TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.
Journal ArticleDOI

Estimating the Dimension of a Model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.

Estimating the dimension of a model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Book

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Book

Causation, prediction, and search

TL;DR: The authors axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models.