scispace - formally typeset
Journal ArticleDOI

Long-range correlations in nucleotide sequences

TLDR
This work proposes a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which it refers to as a 'DNA walk', and uncovers a remarkably long-range power law correlation.
Abstract
DNA sequences have been analysed using models, such as an n-step Markov chain, that incorporate the possibility of short-range nucleotide correlations. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

read more

Citations
More filters
Journal ArticleDOI

Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series

TL;DR: A new method--detrended fluctuation analysis (DFA)--for quantifying this correlation property in non-stationary physiological time series is described and application of this technique shows evidence for a crossover phenomenon associated with a change in short and long-range scaling exponents.
Journal ArticleDOI

Multiscale entropy analysis of biological signals

TL;DR: The MSE method is applied to the analysis of coding and noncoding DNA sequences and it is found that the latter have higher multiscale entropy, consistent with the emerging view that so-called "junk DNA" sequences contain important biological information.
Journal ArticleDOI

Long-range anticorrelations and non-Gaussian behavior of the heartbeat

TL;DR: It is found that the successive increments in the cardiac beat-to-beat intervals of healthy subjects display scale-invariant, long-range anticorrelations (up to 10(4) heart beats), and the different scaling behavior in health and disease must relate to the underlying dynamics of the heartbeat.
Journal ArticleDOI

Evolution of long-range fractal correlations and 1/f noise in DNA base sequences.

TL;DR: Spectral density measurements of individual base positions demonstrate the ubiquity of low-frequency 1/f β noise and long-range fractal correlations as well as prominent short-range periodicities.
Journal ArticleDOI

Effect of nonstationarities on detrended fluctuation analysis.

TL;DR: In this article, the effects of three types of non-stationarities often encountered in real data were studied. And the authors compared the difference between the scaling results obtained for stationary correlated signals and correlated signals with these three types and showed how the characteristics of these crossovers depend on the fraction and size of the parts cut out from the signal, the concentration of spikes and their amplitudes.
References
More filters
Book

Phase Transitions and Critical Phenomena

TL;DR: The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results as discussed by the authors, and the major aim of this serial is to provide review articles that can serve as standard references for research workers in the field.
Journal ArticleDOI

Self-organized criticality: An explanation of the 1/ f noise

TL;DR: It is shown that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point, and flicker noise, or 1/f noise, can be identified with the dynamics of the critical state.
Book

Introduction to Phase Transitions and Critical Phenomena

TL;DR: In this article, the authors present a paperback edition of a distinguished book, originally published by Clarendon Press in 1971, which is at the level at which a graduate student who has studied condensed matter physics can begin to comprehend the nature of phase transitions, which involve the transformation of one state of matter into another.
Journal ArticleDOI

Why genes in pieces

Journal ArticleDOI

Low-frequency fluctuations in solids: 1/f noise

TL;DR: In this article, the authors deal with selected topics regarding the properties of simple condensed matter systems, especially metals, and find that considerable experimental and conceptual progress has been made, but specific physical processes mostly remain to be identified.
Related Papers (5)