scispace - formally typeset
Open AccessJournal ArticleDOI

Markov Random Field Segmentation of Brain MR Images

Reads0
Chats0
TLDR
Describes a fully-automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images that captures three features that are of special importance for MR images, i.e., nonparametric distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities.
Abstract
We describe a fully-automatic 3D-segmentation technique for brain MR images. Using Markov random fields the segmentation algorithm captures three important MR features, i.e. non-parametric distributions of tissue intensities, neighborhood correlations and signal inhomogeneities. Detailed simulations and real MR images demonstrate the performance of the segmentation algorithm. The impact of noise, inhomogeneity, smoothing and structure thickness is analyzed quantitatively. Even single echo MR images are well classified into gray matter, white matter, cerebrospinal fluid, scalp-bone and background. A simulated annealing and an iterated conditional modes implementation are presented. Keywords: Magnetic Resonance Imaging, Segmentation, Markov Random Fields

read more

Citations
More filters
Journal ArticleDOI

Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm

TL;DR: The authors propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations.
Journal ArticleDOI

Automatically Parcellating the Human Cerebral Cortex

TL;DR: A technique for automatically assigning a neuroanatomical label to each location on a cortical surface model based on probabilistic information estimated from a manually labeled training set is presented, comparable in accuracy to manual labeling.
Journal ArticleDOI

Current methods in medical image segmentation.

TL;DR: A critical appraisal of the current status of semi-automated and automated methods for the segmentation of anatomical medical images is presented, with an emphasis on the advantages and disadvantages of these methods for medical imaging applications.
Journal ArticleDOI

Automated model-based tissue classification of MR images of the brain

TL;DR: The algorithm is able to segment single- and multi-spectral MR images, corrects for MR signal inhomogeneities, and incorporates contextual information by means of Markov random Fields (MRF's).
Journal ArticleDOI

Automated model-based bias field correction of MR images of the brain

TL;DR: The method the authors propose applies an iterative expectation-maximization (EM) strategy that interleaves pixel classification with estimation of class distribution and bias field parameters, improving the likelihood of the model parameters at each iteration.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Journal ArticleDOI

Equation of state calculations by fast computing machines

TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Journal ArticleDOI

Snakes : Active Contour Models

TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Related Papers (5)