scispace - formally typeset
Open AccessPosted Content

On the Approximability of Robust Network Design.

TLDR
It is proved that the robust network design problem with minimum congestion cannot be approximated within any constant factor, and another proof of the result of Goyal\&al (2009) stating that the optimal linear cost under static routing can be more expensive than the cost obtained under dynamic routing.
Abstract
Given the dynamic nature of traffic, we investigate the variant of robust network design where we have to determine the capacity to reserve on each link so that each demand vector belonging to a polyhedral set can be routed. The objective is either to minimize congestion or a linear cost. Routing is assumed to be fractional and dynamic (i.e., dependent on the current traffic vector). We first prove that the robust network design problem with minimum congestion cannot be approximated within any constant factor. Then, using the ETH conjecture, we get a $\Omega(\frac{\log n}{\log \log n})$ lower bound for the approximability of this problem. This implies that the well-known $O(\log n)$ approximation ratio established by R\"{a}cke in 2008 is tight. Using Lagrange relaxation, we obtain a new proof of the $O(\log n)$ approximation. An important consequence of the Lagrange-based reduction and our inapproximability results is that the robust network design problem with linear reservation cost cannot be approximated within any constant ratio. This answers a long-standing open question of Chekuri (2007). We also give another proof of the result of Goyal\&al (2009) stating that the optimal linear cost under static routing can be $\Omega(\log n)$ more expensive than the cost obtained under dynamic routing. Finally, we show that even if only two given paths are allowed for each commodity, the robust network design problem with minimum congestion or linear cost is hard to approximate within some constant.

read more

Citations
References
More filters
Book

Geometric Algorithms and Combinatorial Optimization

TL;DR: In this article, the Fulkerson Prize was won by the Mathematical Programming Society and the American Mathematical Society for proving polynomial time solvability of problems in convexity theory, geometry, and combinatorial optimization.
MonographDOI

Computational Complexity: A Modern Approach

TL;DR: This beginning graduate textbook describes both recent achievements and classical results of computational complexity theory and can be used as a reference for self-study for anyone interested in complexity.
Journal ArticleDOI

Which Problems Have Strongly Exponential Complexity

TL;DR: A generalized reduction that is based on an algorithm that represents an arbitrary k-CNF formula as a disjunction of 2?nk-C NF formulas that are sparse, that is, each disjunct has O(n) clauses, and shows that Circuit-SAT is SERF-complete for all NP-search problems.
Journal ArticleDOI

Adjustable robust solutions of uncertain linear programs

TL;DR: The Affinely Adjustable Robust Counterpart (AARC) problem is shown to be, in certain important cases, equivalent to a tractable optimization problem, and in other cases, having a tight approximation which is tractable.
Journal ArticleDOI

On the complexity of K -SAT

TL;DR: In this article, it was shown that the complexity of solving k-SAT increases as k increases, and that for k?3, sk is increasing infinitely often assuming ETH.
Related Papers (5)