scispace - formally typeset
Journal ArticleDOI

Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength

TLDR
In this paper, a new resonance Raman phenomenon is proposed which is the Raman component of resonant Mie scattering, and in which the polarizability of the metal particles is modulated by the vibrations of the adsorbed molecules.
Abstract
Intense Raman scattering by pyridine molecules adsorbed on silver or gold aqueous sol particles of dimensions comparable to the wavelength is reported. The degree of intensity enhancement is strongly dependent on the excitation wavelength, with a sharp resonance Raman maximum for excitation at the wavelength of the Mie extinction maximum of the metal particles, and for the silver sols the Raman maximum is shown to follow the extinction maximum to longer wavelengths with increase in particle size. A new resonance Raman phenomenon is thus proposed which is the Raman component of resonant Mie scattering, and in which the polarizability of the metal particles is modulated by the vibrations of the adsorbed molecules. These observations confirm that surface plasma oscillations are involved in the intense Raman scattering already reported for molecules adsorbed at roughened silver surfaces. The metal dielectric function requirements for resonant Mie scattering enable the optimum excitation wavelength for plasma resonance-enhanced Raman studies at the surface of other metals to be estimated.

read more

Citations
More filters
Journal ArticleDOI

A DNA-based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials

TL;DR: A method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition is described.
Journal ArticleDOI

Surface-enhanced spectroscopy

TL;DR: The surface-enhanced Raman scattering (SERS) effect was first discovered by Fleischmann, Van Duyne, Creighton, and Creighton as discussed by the authors, who showed that molecules adsorbed on specially prepared silver surfaces produce a Raman spectrum that is at times a millionfold more intense than expected.
Journal ArticleDOI

Antimicrobial effects of silver nanoparticles

TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.
Journal ArticleDOI

Surface Plasmon Spectroscopy of Nanosized Metal Particles

TL;DR: In this paper, the use of optical measurements to monitor electrochemical changes on the surface of nanosized metal particles is discussed within the Drude model, and the absorption spectrum of a metal sol in water is shown to be strongly affected by cathodic or anodic polarization, chemisorption, metal adatom deposition, and alloying.
Journal ArticleDOI

Silver nanoparticles: green synthesis and their antimicrobial activities.

TL;DR: This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity.
Related Papers (5)