scispace - formally typeset
BookDOI

Positrons in solids

Pekka J. Hautojärvi
- Vol. 12
Reads0
Chats0
TLDR
Positron decomposition has been studied extensively in the literature as mentioned in this paper, with a focus on the effect of free positrons and their formation and removal in the presence of free Positrons.
Abstract
1. Introduction to Positron Annihilation.- 1.1 Positron Method.- 1.2 Annihilation of Free Positrons.- 1.3 Experimental Techniques.- 1.3.1 Lifetime Measurements.- 1.3.2 Angular Correlation Measurements.- 1.3.3 Line-Shape Measurements.- 1.3.4 Correlation Between Lifetime and Momentum.- 1.4 Positroniurn Formation and Annihilation.- 1.5 Topics of Positron Studies.- 1.5.1 Metals.- 1.5.2 Metal Defects.- 1.5.3 Ionic Crystals.- 1.5.4 Slow Positrons and Positronium.- 1.5.5 Gases and Low-Temperature Phenomena.- 1.5.6 Molecular Sol ids.- 1.5.7 Positronium Chemistry.- 1.6 Summary.- References.- 2. Electron Momentum Densities in Metals and Alloys.- 2.1 Theory.- 2.1.1 Momentum Density.- 2.1.2 Many-Body Effects.- 2.1.3 Positron Thermalization, Effective Mass and Other Thermal Effects.- a) Thermalization.- b) Effective Mass.- c) Other Thermal Effects.- 2.2 Wave Functions.- 2.2.1 Positron Wave Function.- 2.2.2 Electron Band Structure and Wave Functions.- a) OPW Method.- b) APW Method.- c) KKR and Related Methods.- d) Other Methods.- 2.2.3 Symmetry Properties of Aj(?,k).- a) Radial Behavior.- b) Directional Symmetry.- 2.3 Experimental Techniques.- 2.3.1 2? Angular Correlation Measurements.- 2.3.2 Rotating Specimen Method.- 2.3.3 Doppler Broadening.- 2.3.4 Specimen Preparation.- 2.3.5 Corrections.- a) "Beam Profile" Correction.- b) Diffraction Effect.- c) Angular Resolution and Positron Thermal Motion.- d) Finite Slit Length.- 2.3.6 Analysis.- 2.4 Momentum Density Work in Metals.- 2.4.1 Alkali Metals.- 2.4.2 Other Simple Metals.- 2.4.3 Oriented Graphite, Diamond, Silicon, and Germanium.- 2.4.4 Noble Metals.- 2.4.5 Transition Metals and Rare Earths.- 2.5 Disordered Alloys and Ordered Metallic Compounds.- 2.5.1 Disordered Alloys.- 2.5.2 Metallic Compounds.- 2.6 Conclusion.- References.- 3. Positron Studies of Lattice Defects in Metals.- 3.1 Annihilation Parameters for Defect Studies.- 3.1.1 The Defect Trapping Phenomenon and Its Effect.- 3.1.2 Positron States and Lifetime Spectra.- 3.1.3 Momentum Density Parameters.- 3.2 Monovacancies in Equilibrium.- 3.2.1 The Naive Approach to Temperature Effects.- 3.2.2 Prevacancy Effects.- 3.2.3 Other Complications.- 3.2.4 Vacancy Formation Enthalpy Measurements.- 3.2.5 Characteristic or Threshold Temperatures.- 3.2.6 Pressure Experiments.- 3.3 Nonequilibrium Studies.- 3.3.1 The "Many Defects" Problem.- 3.3.2 Deformation, Quenching, and Irradiation Experiments.- 3.3.3 Annealing Studies.- 3.3.4 Positron Studies of Voids.- 3.4 Defect Studies in Alloys.- 3.4.1 Defect vs Impurity Problems.- 3.4.2 Vacancy Studies.- 3.4.3 Phase Transitions and Boundary Effects.- 3.5 Liquid and Amorphous Metals.- References.- 4. Positrons in Imperfect Solids: Theory.- 4.1 Positron Distribution, Mobility, and Trapping.- 4.1.1 Positron Implantation, Slowing Down, and Thermalization.- 4.1.2 Mobility and Diffusion.- 4.1.3 Positron Distribution in Solids.- 4.1.4 Annihilation Characteristics and Electron-Positron Correlation in Pure Metals.- 4.1.5 Effect of Temperature on Annihilation Characteristics.- 4.1.6 Trapping at Defects.- 4.1.7 Self-trapping.- 4.2 Defects in Metals.- 4.2.1 Electronic Structure of Defects.- 4.2.2 Positron-Defect Interaction.- 4.2.3 Annihilation Characteristics.- 4.2.4 Applications.- a) Vacancies.- b) Dislocations.- c) Impurities and Alloys.- d) Vacancy Clusters.- e) Surfaces.- 4.3 Nonmetals.- 4.4 Conclusions.- References.- 5. Positrons in Ionic Solids..- 5.1 Experimental Methods.- 5.1.1 Standard Experimental Techniques.- 5.1.2 Special Experimental Techniques.- a) Two-Parameter Age-Momentum Measurements.- b) Magnetic Quenching Measurements.- 5.1.3 Experimental Difficulties.- a) Analysis of Multicomponent Lifetime Spectra.- b) Analysis of Multicomponent Momentum Distributions.- c) Source and Surface Contributions to Lifetime Spectra.- d) Radiation Damage Due to the Positron Source.- 5.2 Annihilation Characteristics in Alkali Halides.- 5.2.1 Room Temperature Measurements on Crystals with Low Defect Concentration.- a) Lifetime Spectra.- b) Angular Correlation Curves.- c) Doppler-Broadened Annihilation Line Shape.- d) Three-Quantum Annhi1ation.- 5.2.2 Temperature Effects.- 5.2.3 Annihilation in Crystals with High Defect Concentration.- a) Thermal Defect Generation.- b) Thermal Quenching.- c) Additive Coloration.- d) F ? F-Conversion.- e) Aggregation of F Centers.- f) Doping with Divalent Impurities.- g) Defect Creation by Ionizing Radiation.- h) Plastic Deformation.- i) Mixed Crystals.- 5.2.4 Magnetic Field Effects.- a) Crystals with Low Defect Concentration.- b) Additively Colored Crystals.- c) Doped Crystals.- 5.3 Positron States in Alkali Halides.- 5.3.1 Intrinsic States.- a) Nearly Free Positrons in a Perfect Lattice.- b) Quasi-Positronium in Perfect Crystals.- 5.3.2 Annihilation Centers.- a) CA Center.- b) aA+ Center.- c) CA- and cA-(Ca2+) Centers.- d) aA Center.- e) a2A+ and a3A+ Centers.- 5.3.3 Kinetics of State Formation.- a) Slowing Down.- b) Quasi-Positronium Formation in Perfect Crystals.- c) Formation of A Centers.- 5.4 Annihilation in Other Ionic Compounds.- 5.4.1 Hydrides of Alkali and Alkaline-Earth Metals.- 5.4.2 Copper, Silver, Gold, Thallium Halides.- 5.4.3 Alkaline-Earth Halides.- 5.4.4 Alkaline-Earth Oxides.- References.- Additional References with Titles.

read more

Citations
More filters
Journal ArticleDOI

Suppression of helium bubble growth in palladium by prior cold working

TL;DR: In this article, a suppression of helium bubble growth due to the presence of dislocations is established, and bubble growth is reduced by over-pressure in dislocation-containing samples.
Journal ArticleDOI

Positron-lifetime study of vacancy annealing in neutron-irradiated GaAs

TL;DR: In this paper, the authors used positron lifetime measurements to study the annealing of vacancies in neutron-irradiated GaAs, which are interpreted as defects in the Ga sublattice.
Journal ArticleDOI

Vacancy formation energy measurements in single crystal aluminum using a variable-energy positron beam

TL;DR: The vacancy formation energy of an A1(100) single crystal has been determined by both positron diffusion length and Doppler broadening measurements to beEIVf=0.63 ± 0.02eV and EIVf =0.64 − 0.04eV, respectively as discussed by the authors.
Journal ArticleDOI

Vacancy-type defect production in CLAM steel after the co-implantation of He and H ion beams studied by positron-annihilation spectroscopy

TL;DR: In this article, the defect density increased with increased fluence for the two implanted patterns, and the difference between the S parameters of pre-implanted H and He decreased with increasing fluence.
Journal ArticleDOI

Non-Destructive Evaluation of Fatigue Damage in Type 316 Stainless Steel Using Positron Annihilation Lineshape Analysis

TL;DR: In this article, the authors applied positron annihilation lineshape analysis for non-destructive evaluation of fatigue stored in type 316 stainless steel, mainly used in primary water lines of pressurized water reactors (PWR).
Related Papers (5)