scispace - formally typeset
Open AccessJournal ArticleDOI

Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks

Reads0
Chats0
TLDR
Probabilistic Boolean Networks (PBN) are introduced that share the appealing rule-based properties of Boolean networks, but are robust in the face of uncertainty.
Abstract
Motivation: Our goal is to construct a model for genetic regulatory networks such that the model class: (i) incorporates rule-based dependencies between genes; (ii) allows the systematic study of global network dynamics; (iii) is able to cope with uncertainty, both in the data and the model selection; and (iv) permits the quantification of the relative influence and sensitivity of genes in their interactions with other genes. Results: We introduce Probabilistic Boolean Networks (PBN) that share the appealing rule-based properties of Boolean networks, but are robust in the face of uncertainty. We show how the dynamics of these networks can be studied in the probabilistic context of Markov chains, with standard Boolean networks being special cases. Then, we discuss the relationship between PBNs and Bayesian networks—a family of graphical models that explicitly represent probabilistic relationships between variables. We show how probabilistic dependencies between a gene and its parent genes, constituting the basic building blocks of Bayesian networks, can be obtained from PBNs. Finally, we present methods for quantifying the influence of genes on other genes, within the context of PBNs. Examples illustrating the above concepts are presented throughout the paper.

read more

Citations
More filters
Proceedings ArticleDOI

Implicit methods for probabilistic modeling of Gene Regulatory Networks

TL;DR: In this paper, Probabilistic Boolean Networks (PBNs) have been used for in-silico modeling of Gene Regulatory Networks (GRN) for modeling and understanding complex pathways.
Journal ArticleDOI

A Bayesian Network-Based Approach to Selection of Intervention Points in the Mitogen-Activated Protein Kinase Plant Defense Response Pathway.

TL;DR: A novel approach to select significant nodes in the network using a decision-theoretic approach is given and results show that the proposed approach is effective in selecting genes that play crucial roles in the biological phenomenon being studied.
Journal ArticleDOI

TIGRNCRN: Trustful inference of gene regulatory network using clustering and refining the network.

TL;DR: The results of the evaluation indicate that the proposed method recognized regulatory relations in Bayesian modeling process well, due to using of biological knowledge which is hidden in the data collection, and is able to recognize gene regulatory networks align with important methods in this field.

Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

TL;DR: Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components.
References
More filters
Book

The Origins of Order: Self-Organization and Selection in Evolution

TL;DR: The structure of rugged fitness landscapes and the structure of adaptive landscapes underlying protein evolution, and the architecture of genetic regulatory circuits and its evolution.
Journal ArticleDOI

Metabolic stability and epigenesis in randomly constructed genetic nets

TL;DR: The hypothesis that contemporary organisms are also randomly constructed molecular automata is examined by modeling the gene as a binary (on-off) device and studying the behavior of large, randomly constructed nets of these binary “genes”.
Journal ArticleDOI

Using Bayesian networks to analyze expression data

TL;DR: A new framework for discovering interactions between genes based on multiple expression measurements is proposed and a method for recovering gene interactions from microarray data is described using tools for learning Bayesian networks.
Book

An introduction to Bayesian networks

TL;DR: The principal ideas of probabilistic reasoning - known as Bayesian networks - are outlined and their practical implications illustrated and are intended for MSc students in knowledge-based systems, artificial intelligence and statistics, and for professionals in decision support systems applications and research.
Related Papers (5)