scispace - formally typeset
Open AccessJournal ArticleDOI

Pushing the limit: masticatory stress and adaptive plasticity in mammalian craniomandibular joints

TLDR
It is argued that a critical component of current and future research on adaptive plasticity in the skull, and especially cranial joints, should employ a multifaceted characterization of a functional system, one that incorporates data on myriad tissues so as to evaluate the role of altered load versus differential tissue response on the anatomical, cellular and molecular processes that contribute to the strength of such composite structures.
Abstract
Excessive, repetitive and altered loading have been implicated in the initiation of a series of soft- and hard-tissue responses or ;functional adaptations' of masticatory and locomotor elements. Such adaptive plasticity in tissue types appears designed to maintain a sufficient safety factor, and thus the integrity of given element or system, for a predominant loading environment(s). Employing a mammalian species for which considerable in vivo data on masticatory behaviors are available, genetically similar domestic white rabbits were raised on diets of different mechanical properties so as to develop an experimental model of joint function in a normal range of physiological loads. These integrative experiments are used to unravel the dynamic inter-relationships among mechanical loading, tissue adaptive plasticity, norms of reaction and performance in two cranial joint systems: the mandibular symphysis and temporomandibular joint (TMJ). Here, we argue that a critical component of current and future research on adaptive plasticity in the skull, and especially cranial joints, should employ a multifaceted characterization of a functional system, one that incorporates data on myriad tissues so as to evaluate the role of altered load versus differential tissue response on the anatomical, cellular and molecular processes that contribute to the strength of such composite structures. Our study also suggests that the short-term duration of earlier analyses of cranial joint tissues may offer a limited notion of the complex process of developmental plasticity, especially as it relates to the effects of long-term variation in mechanical loads, when a joint is increasingly characterized by adaptive and degradative changes in tissue structure and composition. Indeed, it is likely that a component of the adaptive increases in rabbit TMJ and symphyseal proportions and biomineralization represent a compensatory mechanism to cartilage degradation that serves to maintain the overall functional integrity of each joint system. Therefore, while variation in cranial joint anatomy and performance among sister taxa is, in part, an epiphenomenon of interspecific differences in diet-induced masticatory stresses characterizing the individual ontogenies of the members of a species, this behavioral signal may be increasingly mitigated in over-loaded and perhaps older organisms by the interplay between adaptive and degradative tissue responses.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Recent advances in X-ray microtomography applied to materials

TL;DR: In this article, the authors highlight recent advances in X-ray microcomputed tomography (microCT) as applied to materials, specifically advances made since the first materials microCT review appeared in Internati...
Journal ArticleDOI

TMJ disorders: future innovations in diagnostics and therapeutics.

TL;DR: Novel findings in biomedicine and developments in imaging and computer technologies are beginning to provide a vision of future innovations in the diagnostics and therapeutics of TMJ disorders, and the identification and use of local or systemic biomarkers to diagnose disease or monitor improvements in therapy.
Journal Article

Myostatin (GDF-8) as a key factor linking muscle mass and bone structure.

TL;DR: The data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells, and that hisostatin antagonists and inhibitors are likely to enhance both muscle mass and bone strength.
Journal ArticleDOI

New insights into dinosaur jaw muscle anatomy.

TL;DR: The osteological correlates and inferred soft tissue anatomy of the jaw muscles and relevant neurovasculature in the temporal region of the dinosaur head are presented to provide the anatomical foundation necessary for future analyses of skull function and evolution in an important vertebrate clade.
References
More filters
Journal ArticleDOI

Temporalis function in anthropoids and strepsirrhines: an EMG study.

TL;DR: The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication, and it was demonstrated that anthropoids demonstrate a relative increase in muscle-force recruitment of the balancing-side posterior temporalis.
Journal ArticleDOI

Mammalian Feeding Motor Patterns

TL;DR: This review will discuss the general mammalian feeding patterns, an overview of the evolutionary development and ontogeny of these patterns, the influence of occlusal forces, and recent developments in computer modeling.
BookDOI

Human cell culture protocols

TL;DR: Establishment and Maintenance of Normal Human Keratinocyte Cultures, and In Vitro Cultures of Human Retinal Pigment Epithelium: Retaining Properties of Proximal Tubule Cells.
Journal ArticleDOI

Mandibular form and function in North American and European Adapidae and Omomyidae.

TL;DR: To provide a quantitative study of mandibular form and function in Eocene primates, the scaling of jaw dimensions and the development of symphyseal fusion was considered in a broad sample of North American and European Adapidae and Omomyidae.
Journal ArticleDOI

Development of the masseter muscle and oral behavior in the pig.

TL;DR: During mastication the adult pig masseter contracts with a complex pattern involving a wave of electromyographic activity moving from the ventro-rostral corner to the dorso-caudal corner, which is not developed in fetuses.
Related Papers (5)