scispace - formally typeset
Open AccessJournal ArticleDOI

Rapidly rotating atomic gases

Nigel R. Cooper
- 11 Dec 2008 - 
- Vol. 57, Iss: 6, pp 539-616
TLDR
In this article, the main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate.
Abstract
In this article, we review developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single-component atomic Bose gas, which (at least at rest) forms a Bose–Einstein condensate. Rotation leads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores, as set by the healing length, start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single-particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. I...

read more

Citations
More filters
Journal ArticleDOI

I and i

Kevin Barraclough
- 08 Dec 2001 - 
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Journal ArticleDOI

Topological Photonics

TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Journal ArticleDOI

Quantum simulations with ultracold quantum gases

TL;DR: In this paper, a review of advances in this field is presented and discussed the possibilities offered by this approach to quantum simulation, as well as the possibilities of quantum simulation with ultracold quantum gases.
Journal ArticleDOI

Colloquium: Artificial gauge potentials for neutral atoms

TL;DR: In this article, the physical principles at the basis of this artificial magnetism are presented, and the analysis is generalized to the simulation of non-Abelian gauge potentials and some striking consequences are presented.
Journal ArticleDOI

Quantum fluids of light

TL;DR: In this paper, a review of recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems is presented, from the superfluid flow around a defect at low speeds to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles.
References
More filters
Journal ArticleDOI

I and i

Kevin Barraclough
- 08 Dec 2001 - 
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Journal ArticleDOI

Many-Body Physics with Ultracold Gases

TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Journal ArticleDOI

Quantum Phase Transition From a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms

TL;DR: This work observes a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential, and can induce reversible changes between the two ground states of the system.
Journal ArticleDOI

Non-Abelian Anyons and Topological Quantum Computation

TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Related Papers (5)