scispace - formally typeset
Open AccessJournal ArticleDOI

RawHash: enabling fast and accurate real-time analysis of raw nanopore signals for large genomes

TLDR
In this paper , the authors proposed a hash-based similarity search for read-and-write analysis of nanopore raw signals for large genomes using a hash value, regardless of the slight variations in these signals.
Abstract
Nanopore sequencers generate electrical raw signals in real-time while sequencing long genomic strands. These raw signals can be analyzed as they are generated, providing an opportunity for real-time genome analysis. An important feature of nanopore sequencing, Read Until, can eject strands from sequencers without fully sequencing them, which provides opportunities to computationally reduce the sequencing time and cost. However, existing works utilizing Read Until either 1) require powerful computational resources that may not be available for portable sequencers or 2) lack scalability for large genomes, rendering them inaccurate or ineffective. We propose RawHash, the first mechanism that can accurately and efficiently perform real-time analysis of nanopore raw signals for large genomes using a hash-based similarity search. To enable this, RawHash ensures the signals corresponding to the same DNA content lead to the same hash value, regardless of the slight variations in these signals. RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that signals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value. We evaluate RawHash on three applications: 1) read mapping, 2) relative abundance estimation, and 3) contamination analysis. Our evaluations show that RawHash is the only tool that can provide high accuracy and high throughput for analyzing large genomes in real-time. When compared to the state-of-the-art techniques, UNCALLED and Sigmap, RawHash provides 1) 25.8× and 3.4× better average throughput and 2) significantly better accuracy for large genomes, respectively. Source code is available at https://github.com/CMU-SAFARI/RawHash.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Efficient real-time selective genome sequencing on resource-constrained devices

TL;DR: In this article , the authors present HARU, a resource-efficient hardware-software codesign-based method that exploits a low-cost and portable heterogeneous multiprocessor system-on-chip platform with on-chip field-programmable gate arrays (FPGA) to accelerate the sDTW-based Read Until algorithm.
Journal ArticleDOI

Accelerating Genome Analysis via Algorithm-Architecture Co-Design

Onur Mutlu, +1 more
- 30 Apr 2023 - 
TL;DR: In this article , the authors provide a brief review of the recent advancements in accelerating genome analysis, covering the opportunities and challenges associated with the acceleration of the key steps of the genome analysis pipeline.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

Improved tools for biological sequence comparison.

TL;DR: Three computer programs for comparisons of protein and DNA sequences can be used to search sequence data bases, evaluate similarity scores, and identify periodic structures based on local sequence similarity.
Journal ArticleDOI

BLAT—The BLAST-Like Alignment Tool

TL;DR: How BLAT was optimized is described, which is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.
Journal ArticleDOI

Minimap2: pairwise alignment for nucleotide sequences

TL;DR: Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database and is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mapper at higher accuracy, surpassing most aligners specialized in one type of alignment.
Related Papers (5)