scispace - formally typeset
Open AccessPosted Content

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation.

TLDR
A Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual convolutional neural Network (RRCNN), which are named RU-Net and R2U-Net respectively are proposed, which show superior performance on segmentation tasks compared to equivalent models including U-nets and residual U- net.
Abstract
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

read more

Citations
More filters
Journal ArticleDOI

Difficulty-aware bi-network with spatial attention constrained graph for axillary lymph node segmentation

TL;DR: A novel difficulty-aware binetwork with a spatial attention constrained graph based on the difficulty grade of images and a novel bi-network architecture is proposed to segment the image adaptively using different branches.
Book ChapterDOI

GLUNet: Global-Local Fusion U-Net for 2D Medical Image Segmentation

TL;DR: Wang et al. as mentioned in this paper proposed a novel Global-Local fusion UNet model (GLUNet), which contains a Global Attention Module (GAM) and a Local Edge Detection Module (LEDM).
Journal ArticleDOI

A Comparative Study of Automated Deep Learning Segmentation Models for Prostate MRI

TL;DR: In this paper , a comparative study of different commonly used segmentation models for prostate gland and zone (peripheral and transition) segmentation is presented. And the results reveal that the choice of model is relatively inconsequential, as the majority produce non-significantly different scores, apart from nnU-Net which consistently outperforms others, and that the models trained on data cropped by the object detector often generalize better.
Book ChapterDOI

Automatic Segmentation for Retinal Vessel Using Concatenate UNet

TL;DR: Wang et al. as mentioned in this paper used nested skip connections to extract feature maps from shallow layer to deep layer, and concatenate and fuse the feature maps to make the utmost of them.
Patent

Image segmentation method based on recursive connection type convolutional neural network, and storage medium

Lin Yongfei, +1 more
TL;DR: In this paper, an image segmentation method based on a recursive connection type convolutional neural network (RCNN) was proposed, which consists of three steps: constructing the recursive connection types, preprocessing an original image, and performing image semantic segmentation processing on the original image.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).