scispace - formally typeset
Open AccessPosted Content

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation.

TLDR
A Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual convolutional neural Network (RRCNN), which are named RU-Net and R2U-Net respectively are proposed, which show superior performance on segmentation tasks compared to equivalent models including U-nets and residual U- net.
Abstract
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

read more

Citations
More filters
Journal ArticleDOI

Dynamic Deep Networks for Retinal Vessel Segmentation

TL;DR: A stochastic training scheme for deep neural networks that robustly balances precision and recall is proposed, which makes a neural network more robust to inter-sample differences in class ratios, which will prove particularly effective for settings with sparse training data, such as medical image analysis.
Journal ArticleDOI

Micro-Vessel Image Segmentation Based on the AD-UNet Model

TL;DR: The Attention-Dense-UNet (AD- UNet) algorithm is applied to segment human bulbar conjunctival micro-vessels and experimental results show that the algorithm can achieve ideal segmentation results.
Journal ArticleDOI

A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation

TL;DR: This study proposes a directional multi-scale line detector technique for the segmentation of retinal vessels with the prime focus on the tiny vessels that are most difficult to segment out, and establishes the validity and applicability of directional multi -scale line detectors as a competitive framework for retinal image segmentation.
Journal ArticleDOI

Unsupervised Method for Retinal Vessel Segmentation Based on Gabor Wavelet and Multiscale Line Detector

TL;DR: A simple unsupervised method based on Gabor wavelet and Multiscale Line Detector is proposed for retinal vessel segmentation, comparable to the state-of-the-art methods, albeit with a simpler approach.
Journal ArticleDOI

Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks

TL;DR: In this article, an end-to-end deep-learning convolutional neural network was developed for automatically detecting media-adventitia borders, luminal regions, and calcified plaque in IVUS images.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).