scispace - formally typeset
Open AccessPosted Content

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation.

TLDR
A Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual convolutional neural Network (RRCNN), which are named RU-Net and R2U-Net respectively are proposed, which show superior performance on segmentation tasks compared to equivalent models including U-nets and residual U- net.
Abstract
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

read more

Citations
More filters
Posted Content

Map-Repair: Deep Cadastre Maps Alignment and Temporal Inconsistencies Fix in Satellite Images

TL;DR: An end-to-end deep learning approach is proposed which is able to solve inconsistencies between the input intensity image and the available building footprints by correcting label noises and, at the same time, misalignments if needed.
Journal ArticleDOI

2D medical image segmentation via learning multi-scale contextual dependencies.

TL;DR: Wang et al. as discussed by the authors proposed a new segmentation framework which enhances the representative capability of small ROIs (particularly in deep layers) and explicitly learns global contextual dependencies in multi-scale feature spaces.
Journal ArticleDOI

U-Net and its variants for Medical Image Segmentation : A short review

Vinay Ummadi
- 17 Apr 2022 - 
TL;DR: Current challenges and future directions for medical image segmen-tation(MIS) will be seen, following how different hybrid architectures have built upon strong techniques from visual recognition tasks.
Proceedings ArticleDOI

Uncertainty Analysis Based Attention Network for Lung Nodule Segmentation from CT Images

TL;DR: A UAA-UNet (Uncertainty Analysis Based Attention UNet) based on the uncertainty analysis of edge regions is proposed, which shows that, in the lung nodule segmentation task, the network achieves significant improvements over the baseline network.
Journal ArticleDOI

Swinv2-Imagen: Hierarchical Vision Transformer Diffusion Models for Text-to-Image Generation

TL;DR: The proposed Swinv2-Imagen model outperforms the current best generative model, Imagen, on MSCOCO and ablation experiments reveal that the addition of semantic layouts is effective in improving the semantic understanding of the model.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).