scispace - formally typeset
Open AccessPosted Content

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation.

TLDR
A Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual convolutional neural Network (RRCNN), which are named RU-Net and R2U-Net respectively are proposed, which show superior performance on segmentation tasks compared to equivalent models including U-nets and residual U- net.
Abstract
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

read more

Citations
More filters
Journal ArticleDOI

Land cover classification in a mixed forest-grassland ecosystem using LResU-net and UAV imagery

TL;DR: Li et al. as mentioned in this paper proposed a new semantic segmentation network of LResU-net in which residual convolution unit (RCU) and loop convolution units (LCU) are added to the U-net framework to classify images of different land covers generated by UAV high resolution.
Journal ArticleDOI

Lumen contour segmentation in ivoct based on n-type cnn

TL;DR: The experimental results presented in this paper demonstrate the superior performance of the proposed N-Net architecture, comparing to some existing networks, for enhancing the precision of automatic lumen segmentation and increasing the detailed information of edges of the vascular lumen.
Journal ArticleDOI

Retinal blood vessel segmentation from fundus image using an efficient multiscale directional representation technique Bendlets.

TL;DR: An efficient retinal blood vessel segmentation approach where a 4-D feature vector is constructed by the outcome of Bendlet transform, which can capture directional information much more efficiently than the traditional wavelets.
Journal ArticleDOI

Retinal Mosaicking with Vascular Bifurcations Detected on Vessel Mask by a Convolutional Network

TL;DR: Results produced by the proposed method superior to that of AutoStitch, photomerge function in Photoshop cs6 and ICE, demonstrate that accurate matching of detected vascular bifurcations could lead to high-quality mosaic of retinal images.
Book ChapterDOI

Wavelet U-Net for Medical Image Segmentation.

TL;DR: Wu et al. as discussed by the authors embed the wavelet transform into the U-Net architecture to achieve the purpose of down sampling and up sampling, which is called wavelet U-net (WU-Net).
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).