scispace - formally typeset
Open AccessPosted Content

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation.

TLDR
A Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual convolutional neural Network (RRCNN), which are named RU-Net and R2U-Net respectively are proposed, which show superior performance on segmentation tasks compared to equivalent models including U-nets and residual U- net.
Abstract
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

read more

Citations
More filters
Journal ArticleDOI

BRAVE-NET: Fully Automated Arterial Brain Vessel Segmentation in Patients With Cerebrovascular Disease

TL;DR: The BRAVE-NET model is a multiscale 3-D convolutional neural network model developed on a dataset of 264 patients from three different studies enrolling patients with cerebrovascular diseases and validated using high-quality manual labels as ground truth and is the most resistant toward false labelings as revealed by the visual analysis.
Journal ArticleDOI

ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition

TL;DR: Li et al. as discussed by the authors proposed an effective SqueezeNet based asymmetric encoder-decoder U-shape architecture, which mainly functions as an extractor and a discriminator of forest fire.
Journal ArticleDOI

Lung segmentation method with dilated convolution based on VGG-16 network.

TL;DR: Experimental results show that this segmentation method based on the combination of VGG-16 and dilated convolution can effectively segment the lung parenchymal area, and compared to other conventional methods better.
Journal ArticleDOI

DefED-Net: Deformable Encoder-Decoder Network for Liver and Liver Tumor Segmentation

TL;DR: The deformable convolution is used to enhance the feature representation capability of DefED-Net, which can help the network to learn convolution kernels with adaptive spatial structuring information and a ladder-atrous-spatial-pyramid-pooling module using multiscale dilation rate is designed.
Journal ArticleDOI

Extracting apple tree crown information from remote imagery using deep learning

TL;DR: A technique for orchard data acquisition and analysis that uses remote imagery acquired from unmanned aerial vehicles (UAVs) combined with deep learning convolutional neural networks to automatically detect and segment individual trees and measure the crown width, perimeter, and crown projection area of apple trees is presented.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).