scispace - formally typeset
Journal ArticleDOI

Scheduling multithreaded computations by work stealing

TLDR
This paper gives the first provably good work-stealing scheduler for multithreaded computations with dependencies, and shows that the expected time to execute a fully strict computation on P processors using this scheduler is 1:1.
Abstract
This paper studies the problem of efficiently schedulling fully strict (i.e., well-structured) multithreaded computations on parallel computers. A popular and practical method of scheduling this kind of dynamic MIMD-style computation is “work stealing,” in which processors needing work steal computational threads from other processors. In this paper, we give the first provably good work-stealing scheduler for multithreaded computations with dependencies.Specifically, our analysis shows that the expected time to execute a fully strict computation on P processors using our work-stealing scheduler is T1/P + O(T ∞ , where T1 is the minimum serial execution time of the multithreaded computation and (T ∞ is the minimum execution time with an infinite number of processors. Moreover, the space required by the execution is at most S1P, where S1 is the minimum serial space requirement. We also show that the expected total communication of the algorithm is at most O(PT ∞( 1 + nd)Smax), where Smax is the size of the largest activation record of any thread and nd is the maximum number of times that any thread synchronizes with its parent. This communication bound justifies the folk wisdom that work-stealing schedulers are more communication efficient than their work-sharing counterparts. All three of these bounds are existentially optimal to within a constant factor.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Parallel Cover Trees and their Applications

TL;DR: This paper shows highly parallel and work-efficient cover tree algorithms that can handle batch insertions (and thus construction) and batch deletions and uses three key ideas to guarantee work-efficiency: the prefix-doubling scheme, a careful design to limit the graph size on which it applies MIS, and a strategy to propagate information among different levels in the cover tree.
Journal ArticleDOI

Intel Cilk Plus for complex parallel algorithms

TL;DR: In this article, the authors develop a new library called EFFT optimized for large 1-dimensional discrete Fourier transforms (DFFTs) based on the recursive Cooley-Tukey method.
Book ChapterDOI

How to be a successful thief: feudal work stealing for irregular divide-and-conquer applications on heterogeneous distributed systems

TL;DR: A novel Feudal Stealing work-stealing algorithm is presented and it is shown that it delivers consistently better speedups than other work-Stealing algorithms for irregular D&C applications on high-latency heterogeneous distributed systems.
Posted Content

An analysis of budgeted parallel search on conditional Galton-Watson trees

TL;DR: In this paper, the authors study the behavior of the budget parameter on conditional Galton-Watson trees and obtain asymptotically tight bounds on the overhead of the process.
Proceedings ArticleDOI

Task parallel assembly language for uncompromising parallelism

TL;DR: Task Parallel Assembly Language (TPAL) as mentioned in this paper is a RISC-like assembly language with a small set of primitives that leverage existing kernel and hardware support for interrupts to allow parallelism to remain latent, until a heartbeat.
References
More filters
Journal ArticleDOI

Cilk: An Efficient Multithreaded Runtime System

TL;DR: It is shown that on real and synthetic applications, the “work” and “critical-path length” of a Cilk computation can be used to model performance accurately, and it is proved that for the class of “fully strict” (well-structured) programs, the Cilk scheduler achieves space, time, and communication bounds all within a constant factor of optimal.
Journal ArticleDOI

Bounds for certain multiprocessing anomalies

TL;DR: In this paper, precise bounds are derived for several anomalies of this type in a multiprocessing system composed of many identical processing units operating in parallel, and they show that an increase in the number of processing units can cause an increased total length of time needed to process a fixed set of tasks.
Proceedings ArticleDOI

The implementation of the Cilk-5 multithreaded language

TL;DR: Cilk-5's novel "two-clone" compilation strategy and its Dijkstra-like mutual-exclusion protocol for implementing the ready deque in the work-stealing scheduler are presented.
Journal ArticleDOI

The Parallel Evaluation of General Arithmetic Expressions

TL;DR: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log 2 + 10(n - 1) using processors which can independently perform arithmetic operations in unit time.
Related Papers (5)