scispace - formally typeset
Journal ArticleDOI

Scheduling multithreaded computations by work stealing

TLDR
This paper gives the first provably good work-stealing scheduler for multithreaded computations with dependencies, and shows that the expected time to execute a fully strict computation on P processors using this scheduler is 1:1.
Abstract
This paper studies the problem of efficiently schedulling fully strict (i.e., well-structured) multithreaded computations on parallel computers. A popular and practical method of scheduling this kind of dynamic MIMD-style computation is “work stealing,” in which processors needing work steal computational threads from other processors. In this paper, we give the first provably good work-stealing scheduler for multithreaded computations with dependencies.Specifically, our analysis shows that the expected time to execute a fully strict computation on P processors using our work-stealing scheduler is T1/P + O(T ∞ , where T1 is the minimum serial execution time of the multithreaded computation and (T ∞ is the minimum execution time with an infinite number of processors. Moreover, the space required by the execution is at most S1P, where S1 is the minimum serial space requirement. We also show that the expected total communication of the algorithm is at most O(PT ∞( 1 + nd)Smax), where Smax is the size of the largest activation record of any thread and nd is the maximum number of times that any thread synchronizes with its parent. This communication bound justifies the folk wisdom that work-stealing schedulers are more communication efficient than their work-sharing counterparts. All three of these bounds are existentially optimal to within a constant factor.

read more

Content maybe subject to copyright    Report

Citations
More filters
Dissertation

Towards an algorithmic skeleton framework for programming the Intel R Xeon PhiTM processor

TL;DR: Projects PTDC/EIA- EIA/113613/2009 (Synergy-VM) andPTDC/EEI-CTP/1837/2012 (SwiftComp) for financing the purchase of the Intel R Xeon PhiTM.
Proceedings ArticleDOI

SIAW: An Adaptive Idleness-Aware Work-Stealing Strategy on Shared Memory Machines

TL;DR: This paper presents an adaptive idleness-aware work-stealing strategy named SIAW, aiming at promoting load balancing on shared memory machines using the unbalanced tree search (UTS) benchmark, and demonstrates that this approach has great advantage in promote load balancing for large task granularities.
Dissertation

Libra: Achieving Efficient Instruction- and Data- Parallel Execution for Mobile Applications.

Yongjun Park
TL;DR: LIBRA: ACHIEVING EFFICIENT INSTRUCTION and DATAPARALLEL EXECUTION for MOBILE APPLICATIONS for mobile applications.
Journal ArticleDOI

Randomized load balancing by joining and splitting bins

TL;DR: Borders justify the intuition that the power of being adaptive to the current loads is essential for load balancing tasks, and they also show a somehow surprising phenomenon that joins can actually help load balancing if such power is not available.
Journal ArticleDOI

Cache Aware Dynamics Data Layout for Efficient Shared Memory Parallelisation of EUROPLEXUS

TL;DR: This paper proposes to have each thread gather the data it needs for processing a given iteration range, before to actually advance the computation by one time step on this range, which enables to keep the original data structure and leads to very localised code modifications.
References
More filters
Journal ArticleDOI

Cilk: An Efficient Multithreaded Runtime System

TL;DR: It is shown that on real and synthetic applications, the “work” and “critical-path length” of a Cilk computation can be used to model performance accurately, and it is proved that for the class of “fully strict” (well-structured) programs, the Cilk scheduler achieves space, time, and communication bounds all within a constant factor of optimal.
Journal ArticleDOI

Bounds for certain multiprocessing anomalies

TL;DR: In this paper, precise bounds are derived for several anomalies of this type in a multiprocessing system composed of many identical processing units operating in parallel, and they show that an increase in the number of processing units can cause an increased total length of time needed to process a fixed set of tasks.
Proceedings ArticleDOI

The implementation of the Cilk-5 multithreaded language

TL;DR: Cilk-5's novel "two-clone" compilation strategy and its Dijkstra-like mutual-exclusion protocol for implementing the ready deque in the work-stealing scheduler are presented.
Journal ArticleDOI

The Parallel Evaluation of General Arithmetic Expressions

TL;DR: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log 2 + 10(n - 1) using processors which can independently perform arithmetic operations in unit time.
Related Papers (5)