scispace - formally typeset
Journal ArticleDOI

Scheduling multithreaded computations by work stealing

TLDR
This paper gives the first provably good work-stealing scheduler for multithreaded computations with dependencies, and shows that the expected time to execute a fully strict computation on P processors using this scheduler is 1:1.
Abstract
This paper studies the problem of efficiently schedulling fully strict (i.e., well-structured) multithreaded computations on parallel computers. A popular and practical method of scheduling this kind of dynamic MIMD-style computation is “work stealing,” in which processors needing work steal computational threads from other processors. In this paper, we give the first provably good work-stealing scheduler for multithreaded computations with dependencies.Specifically, our analysis shows that the expected time to execute a fully strict computation on P processors using our work-stealing scheduler is T1/P + O(T ∞ , where T1 is the minimum serial execution time of the multithreaded computation and (T ∞ is the minimum execution time with an infinite number of processors. Moreover, the space required by the execution is at most S1P, where S1 is the minimum serial space requirement. We also show that the expected total communication of the algorithm is at most O(PT ∞( 1 + nd)Smax), where Smax is the size of the largest activation record of any thread and nd is the maximum number of times that any thread synchronizes with its parent. This communication bound justifies the folk wisdom that work-stealing schedulers are more communication efficient than their work-sharing counterparts. All three of these bounds are existentially optimal to within a constant factor.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Efficient Resource Oblivious Algorithms for Multicores with False Sharing

TL;DR: Algorithms for a multicore environment in which each core has its own private cache and false sharing can occur are considered, and block-resilient HBP algorithms with low false sharing costs for several fundamental problems are developed.
Proceedings ArticleDOI

On-the-fly pipeline parallelism

TL;DR: A provably efficient scheduling algorithm, the Piper algorithm, is described, which integrates pipeline parallelism into a work-stealing scheduler, allowing pipeline and fork-join parallelism to be arbitrarily nested and automatically throttles the parallelism, precluding "runaway" pipelines.
Proceedings ArticleDOI

An architectural framework for accelerating dynamic parallel algorithms on reconfigurable hardware

TL;DR: The framework introduces a task-based computation model with explicit continuation passing to support dynamic parallelism in addition to static parallelism and introduces a design methodology that includes an architectural template that allows easily creating parallel accelerators from high-level descriptions.
Journal ArticleDOI

Parallel SAT Solving on Peer-to-Peer Desktop Grids

TL;DR: Satciety is a distributed parallel satisfiability (SAT) solver which focuses on tackling the domain-specific problems inherent to one of the most challenging environments for parallel computing—Peer-to-Peer Desktop Grids.
Journal ArticleDOI

Parallelization libraries: Characterizing and reducing overheads

TL;DR: This study uses real hardware and simulations to detail various scheduler and synchronization overheads on Intel's Threading Building Blocks (TBB) and OpenMP and proposes load balancing techniques such as occupancy-based and criticality-guided task stealing, to boost performance.
References
More filters
Journal ArticleDOI

Cilk: An Efficient Multithreaded Runtime System

TL;DR: It is shown that on real and synthetic applications, the “work” and “critical-path length” of a Cilk computation can be used to model performance accurately, and it is proved that for the class of “fully strict” (well-structured) programs, the Cilk scheduler achieves space, time, and communication bounds all within a constant factor of optimal.
Journal ArticleDOI

Bounds for certain multiprocessing anomalies

TL;DR: In this paper, precise bounds are derived for several anomalies of this type in a multiprocessing system composed of many identical processing units operating in parallel, and they show that an increase in the number of processing units can cause an increased total length of time needed to process a fixed set of tasks.
Proceedings ArticleDOI

The implementation of the Cilk-5 multithreaded language

TL;DR: Cilk-5's novel "two-clone" compilation strategy and its Dijkstra-like mutual-exclusion protocol for implementing the ready deque in the work-stealing scheduler are presented.
Journal ArticleDOI

The Parallel Evaluation of General Arithmetic Expressions

TL;DR: It is shown that arithmetic expressions with n ≥ 1 variables and constants; operations of addition, multiplication, and division; and any depth of parenthesis nesting can be evaluated in time 4 log 2 + 10(n - 1) using processors which can independently perform arithmetic operations in unit time.
Related Papers (5)