scispace - formally typeset
Open AccessJournal ArticleDOI

Segregation of form, color, and stereopsis in primate area 18.

David H. Hubel, +1 more
- 01 Nov 1987 - 
- Vol. 7, Iss: 11, pp 3378-3415
Reads0
Chats0
TLDR
The physiological properties of the cells in the thin and pale stripes reflect the properties of their antecedent cells in 17, but nevertheless exhibit differences that suggest the kinds of processing that might occur at this stage.
Abstract
Primate visual cortical area 18 (visual area 2), when stained for the enzyme cytochrome oxidase, shows a pattern of alternating dark and light stripes; in squirrel monkeys, the dark stripes are clearly of 2 alternating types, thick and thin. We have recorded from these 3 subdivisions in macaques and squirrel monkeys, and find that each has distinctive physiological properties: (1) Cells in one set of dark stripes, in squirrel monkeys the thin stripes, are not orientation- selective; a high proportion show color-opponency. (2) Cells in the other set of dark stripes (thick stripes) are orientation-selective; most of them are also selective for binocular disparity, suggesting that they are concerned with stereoscopic depth. (3) Cells in the pale stripes are also orientation-selective and more than half of them are end-stopped. Each of the 3 subdivisions receives a different input from area 17: the thin stripes from the blobs, the pale stripes from the interblobs, the thick stripes from layer 4B. The pale stripes are thus part of the parvocellular system, and the thick stripes part of the magnocellular system. The physiological properties of the cells in the thin and pale stripes reflect the properties of their antecedent cells in 17, but nevertheless exhibit differences that suggest the kinds of processing that might occur at this stage.

read more

Citations
More filters
Journal ArticleDOI

Distributed Hierarchical Processing in the Primate Cerebral Cortex

TL;DR: A summary of the layout of cortical areas associated with vision and with other modalities, a computerized database for storing and representing large amounts of information on connectivity patterns, and the application of these data to the analysis of hierarchical organization of the cerebral cortex are reported on.
Journal ArticleDOI

Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects.

TL;DR: Results suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system using an efficient hierarchical strategy for encoding natural images.
Journal ArticleDOI

Guided Search 2.0 A revised model of visual search

TL;DR: This paper reviews the visual search literature and presents a model of human search behavior, a revision of the guided search 2.0 model in which virtually all aspects of the model have been made more explicit and/or revised in light of new data.
Journal ArticleDOI

Segregation of form, color, movement, and depth: anatomy, physiology, and perception

TL;DR: Perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.
Journal ArticleDOI

How parallel are the primate visual pathways

TL;DR: This proposal that the cortical and subcortical pathways are continuous, so that distinct channels of information that arise in the retina remain segregated up to the highest levels of visual cortex has far-reaching implications for the understanding of the functional organization of the visual system.
References
More filters
Journal ArticleDOI

Receptive fields, binocular interaction and functional architecture in the cat's visual cortex

TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Journal ArticleDOI

Receptive fields and functional architecture of monkey striate cortex

TL;DR: The striate cortex was studied in lightly anaesthetized macaque and spider monkeys by recording extracellularly from single units and stimulating the retinas with spots or patterns of light, with response properties very similar to those previously described in the cat.
Book

Eye Movements and Vision

Journal ArticleDOI

Some informational aspects of visual perception.

Fred Attneave
- 01 May 1954 - 
TL;DR: Special types of lawfulness which may exist in space at a fixed time, and which seem particularly relevant to processes of visual perception are focused on.
Journal ArticleDOI

Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat.

TL;DR: To UNDERSTAND VISION in physiological terms represents a formidable problem for the biologist, and one approach is to stimulate the retina with patterns of light while recording from single cells or fibers at various points along the visual pathway.
Related Papers (5)