scispace - formally typeset
Open AccessProceedings Article

Semi-supervised Sequence Learning

Andrew M. Dai, +1 more
- Vol. 28, pp 3079-3087
TLDR
Two approaches to use unlabeled data to improve Sequence Learning with recurrent networks are presented and it is found that long short term memory recurrent networks after pretrained with the two approaches become more stable to train and generalize better.
Abstract
We present two approaches to use unlabeled data to improve Sequence Learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a language model in NLP. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a "pretraining" algorithm for a later supervised sequence learning algorithm. In other words, the parameters obtained from the pretraining step can then be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after pretrained with the two approaches become more stable to train and generalize better. With pretraining, we were able to achieve strong performance in many classification tasks, such as text classification with IMDB, DBpedia or image recognition in CIFAR-10.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: A new language representation model, BERT, designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Proceedings ArticleDOI

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Posted Content

RoBERTa: A Robustly Optimized BERT Pretraining Approach

TL;DR: It is found that BERT was significantly undertrained, and can match or exceed the performance of every model published after it, and the best model achieves state-of-the-art results on GLUE, RACE and SQuAD.
Posted Content

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

TL;DR: This systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks and achieves state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more.
Posted Content

XLNet: Generalized Autoregressive Pretraining for Language Understanding

TL;DR: XLNet is proposed, a generalized autoregressive pretraining method that enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and overcomes the limitations of BERT thanks to its autore progressive formulation.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Proceedings Article

Sequence to Sequence Learning with Neural Networks

TL;DR: The authors used a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector.
Posted Content

Convolutional Neural Networks for Sentence Classification

TL;DR: In this article, CNNs are trained on top of pre-trained word vectors for sentence-level classification tasks and a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks.
Related Papers (5)
Trending Questions (1)
What is sequence classification in nlp?

The provided paper does not explicitly mention the term "sequence classification" in the context of NLP.