scispace - formally typeset
Journal ArticleDOI

Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton--Jacobi Equations

Alexander Kurganov, +2 more
- 01 Mar 2001 - 
- Vol. 23, Iss: 3, pp 707-740
Reads0
Chats0
TLDR
New Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton--Jacobi equations are introduced, based on the use of more precise information about the local speeds of propagation, and are called central-upwind schemes.
Abstract
We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton--Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241--282; A. Kurganov and D. Levy, SIAM J. Sci. Comput., 22 (2000), pp. 1461--1488; A. Kurganov and G. Petrova, A third-order semidiscrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems, Numer. Math., to appear] and [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 720--742]. The main advantages of the proposed central schemes are the high resolution, due to the smaller amount of the numerical dissipation, and the simplicity. There are no Riemann solvers and characteristic decomposition involved, and this makes them a universal tool for a wide variety of applications. At the same time, the developed schemes have an upwind nature, since they respect the directions of wave propagation by measuring the one-sided local speeds. This is why we call them central-upwind schemes. The constructed schemes are applied to various problems, such as the Euler equations of gas dynamics, the Hamilton--Jacobi equations with convex and nonconvex Hamiltonians, and the incompressible Euler and Navier--Stokes equations. The incompressibility condition in the latter equations allows us to treat them both in their conservative and transport form. We apply to these problems the central-upwind schemes, developed separately for each of them, and compute the corresponding numerical solutions.

read more

Citations
More filters
Journal ArticleDOI

Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows

TL;DR: In this paper, the authors describe the implementation of a computational fluid dynamics solver for the simulation of high-speed flows, which comprises a finite volume discretization using semi-discrete, non-staggered central schemes for colocated variables prescribed on a mesh of polyhedral cells that have an arbitrary number of faces.
Journal ArticleDOI

A second-order well-balanced positivity preserving central-upwind scheme for the saint-venant system ∗

TL;DR: In this paper, an improved second-order central-upwind scheme was proposed, which is capable to both preserve stationary steady states (lake at rest) and to guarantee the positivity of the computed fluid depth.
Journal ArticleDOI

Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers

TL;DR: In this article, the Riemann-solvers-free central scheme was used to solve the 2D case of the Euler problem for the Com- pressible Euler equations.
Journal ArticleDOI

Central-upwind schemes for the saint-venant system

TL;DR: One- and two-dimensional central-upwind schemes for approximating solutions of the Saint-Venant system with source terms due to bottom topography are presented and it is proved that the second-order version of these schemes preserves the nonnegativity of the height of the water.
MonographDOI

An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST)

TL;DR: This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods, and will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods.
References
More filters
Journal ArticleDOI

Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method

TL;DR: In this article, a second-order extension of the Lagrangean method is proposed to integrate the equations of ideal compressible flow, which is based on the integral conservation laws and is dissipative, so that it can be used across shocks.
Journal ArticleDOI

Efficient Implementation of Weighted ENO Schemes

TL;DR: A new way of measuring the smoothness of a numerical solution is proposed, emulating the idea of minimizing the total variation of the approximation, which results in a fifth-order WENO scheme for the caser= 3, instead of the fourth-order with the original smoothness measurement by Liuet al.
Journal ArticleDOI

Efficient implementation of essentially non-oscillatory shock-capturing schemes,II

TL;DR: Two methods of sharpening contact discontinuities-the subcell resolution idea of Harten and the artificial compression idea of Yang, which those authors originally used in the cell average framework-are applied to the current ENO schemes using numerical fluxes and TVD Runge-Kutta time discretizations.
Journal ArticleDOI

Numerical solution of the Navier-Stokes equations

TL;DR: In this paper, a finite-difference method for solving the time-dependent Navier-Stokes equations for an incompressible fluid is introduced, which is equally applicable to problems in two and three space dimensions.
Journal ArticleDOI

On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws

TL;DR: This paper reviews some of the recent developments in upstream difference schemes through a unified representation, in order to enable comparison between the various schemes.
Related Papers (5)