scispace - formally typeset
Open AccessPosted Content

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks.

TLDR
In this paper, a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people, and predicts socially plausible future by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss.
Abstract
Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.

read more

Citations
More filters
Book ChapterDOI

R2P2: A ReparameteRized Pushforward Policy for Diverse, Precise Generative Path Forecasting

TL;DR: A method to forecast a vehicle’s ego-motion as a distribution over spatiotemporal paths, conditioned on features embedded in an overhead map, and obtains expressions for the cross-entropy metrics that can be efficiently evaluated and differentiated, enabling stochastic-gradient optimization.
Posted Content

SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints.

TL;DR: SoPhie is presented; an interpretable framework based on Generative Adversarial Network (GAN), which leverages two sources of information, the path history of all the agents in a scene, and the scene context information, using images of the scene.
Proceedings ArticleDOI

Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories With GANs

TL;DR: This paper proposes a novel approach for predicting the motion of pedestrians interacting with others that uses a Generative Adversarial Network to sample plausible predictions for any agent in the scene and shows that the proposed method leads to generate more diverse samples and to preserve the modes of the predictive distribution.
Proceedings Article

Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks

TL;DR: A graph-based generative adversarial network that generates realistic, multimodal trajectory predictions by better modelling the social interactions of pedestrians in a scene and achieves state-of-the-art performance comparing it to several baselines on existing trajectory forecasting benchmarks.
Posted Content

Peeking into the Future: Predicting Future Person Activities and Locations in Videos

TL;DR: An end-to-end, multi-task learning system utilizing rich visual features about human behavioral information and interaction with their surroundings is proposed, providing the first empirical evidence that joint modeling of paths and activities benefits future path prediction.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Posted Content

Adam: A Method for Stochastic Optimization

TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Posted Content

Image-to-Image Translation with Conditional Adversarial Networks

TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Related Papers (5)