scispace - formally typeset
Open AccessPosted Content

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks.

TLDR
In this paper, a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people, and predicts socially plausible future by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss.
Abstract
Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.

read more

Citations
More filters
Posted Content

TNT: Target-driveN Trajectory Prediction

TL;DR: The key insight is that for prediction within a moderate time horizon, the future modes can be effectively captured by a set of target states, which leads to the target-driven trajectory prediction (TNT) framework.
Proceedings ArticleDOI

VectorNet: Encoding HD Maps and Agent Dynamics From Vectorized Representation

TL;DR: VectorNet as discussed by the authors proposes a hierarchical graph neural network that first exploits the spatial locality of individual road components represented by vectors and then models the high-order interactions among all the components.
Posted Content

The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs

TL;DR: The Trajectron is presented, a graph-structured model that predicts many potential future trajectories of multiple agents simultaneously in both highly dynamic and multimodal scenarios (i.e. where the number of agents in the scene is time-varying and there are many possible highly-distinct futures for each agent).
Book

Synthetic Data for Deep Learning

TL;DR: The synthetic-to-real domain adaptation problem that inevitably arises in applications of synthetic data is discussed, including synthetic- to-real refinement with GAN-based models and domain adaptation at the feature/model level without explicit data transformations.
Proceedings ArticleDOI

SpAGNN: Spatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data

TL;DR: This paper proposes a novel spatially-aware graph neural network (SpAGNN) that models the interactions between agents in the scene and exploits a convolutional neural network to detect the actors and compute their initial states.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Posted Content

Adam: A Method for Stochastic Optimization

TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Posted Content

Image-to-Image Translation with Conditional Adversarial Networks

TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Related Papers (5)