scispace - formally typeset
Open AccessBook ChapterDOI

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

TLDR
This work equips the networks with another pooling strategy, “spatial pyramid pooling”, to eliminate the above requirement, and develops a new network structure, called SPP-net, which can generate a fixed-length representation regardless of image size/scale.
Abstract
Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g. 224×224) input image. This requirement is “artificial” and may hurt the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the networks with a more principled pooling strategy, “spatial pyramid pooling”, to eliminate the above requirement. The new network structure, called SPP-net, can generate a fixed-length representation regardless of image size/scale. By removing the fixed-size limitation, we can improve all CNN-based image classification methods in general. Our SPP-net achieves state-of-the-art accuracy on the datasets of ImageNet 2012, Pascal VOC 2007, and Caltech101.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Deep Learning Face Attributes in the Wild

TL;DR: Zhang et al. as mentioned in this paper proposed a novel deep learning framework for attribute prediction in the wild, which cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently.
Journal ArticleDOI

Deep convolutional neural networks for image classification: A comprehensive review

TL;DR: This review, which focuses on the application of CNNs to image classification tasks, covers their development, from their predecessors up to recent state-of-the-art deep learning systems.
Book ChapterDOI

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

TL;DR: SPP-Net as mentioned in this paper proposes a spatial pyramid pooling strategy, which can generate a fixed-length representation regardless of image size/scale, and achieves state-of-the-art performance in object detection.
Proceedings Article

Learning structured output representation using deep conditional generative models

TL;DR: A deep conditional generative model for structured output prediction using Gaussian latent variables is developed, trained efficiently in the framework of stochastic gradient variational Bayes, and allows for fast prediction using Stochastic feed-forward inference.
Posted Content

Empirical Evaluation of Rectified Activations in Convolutional Network.

TL;DR: The experiments suggest that incorporating a non-zero slope for negative part in rectified activation units could consistently improve the results, and are negative on the common belief that sparsity is the key of good performance in ReLU.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Distinctive Image Features from Scale-Invariant Keypoints

TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Related Papers (5)