scispace - formally typeset
Journal ArticleDOI

Statistical mechanics of cellular automata

Stephen Wolfram
- 01 Jul 1983 - 
- Vol. 55, Iss: 3, pp 601-644
Reads0
Chats0
TLDR
Analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors.
Abstract
Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of "elementary" cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions \ensuremath{\simeq} 1.59 or \ensuremath{\simeq} 1.69. With "random" initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed.

read more

Citations
More filters
Journal ArticleDOI

Topological chaos of universal elementary cellular automata rule

TL;DR: A rigorous analysis of the relationship between rules 110, 170 and 240 by applying blocking transformation and releasing transformation finds that the intrinsic complexity of rule 110 is high according to the usual measure of complexity organized around the symbolic dynamics of stationary symbol sequences.
Journal ArticleDOI

Arithmetic representations of cellular automata

TL;DR: In this article, one-and two-dimensional cellular automata (CA) are described in terms of a rithmetic relation, and a measure theoretic entropy for one-dimensional CA is introduced to characterize spatial complexity.
Posted Content

Prediction and Adaptation in an Evolving Chaotic Environment

TL;DR: These simulations are designed to quantify adaptation and to expore co-adaptation for a simple calculable model of a complex adaptive system and suggest a correlation between optimal adapatation, optimal complexity, and emergent behavior.
Journal ArticleDOI

Mathematical modeling and cellular automata simulation of infectious disease dynamics: Applications to the understanding of herd immunity.

TL;DR: A generalized mathematical model and cellular automata simulations are pursued to study the dynamics of infectious diseases and apply it in the context of the COVID-19 spread to find the important result that slower attainment of the HI is relatively less fatal.
References
More filters
Book

Introduction to Automata Theory, Languages, and Computation

TL;DR: This book is a rigorous exposition of formal languages and models of computation, with an introduction to computational complexity, appropriate for upper-level computer science undergraduates who are comfortable with mathematical arguments.
Journal ArticleDOI

The Chemical Basis of Morphogenesis

TL;DR: In this article, it is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Journal ArticleDOI

On Computable Numbers, with an Application to the Entscheidungsproblem

TL;DR: This chapter discusses the application of the diagonal process of the universal computing machine, which automates the calculation of circle and circle-free numbers.
Journal ArticleDOI

Metabolic stability and epigenesis in randomly constructed genetic nets

TL;DR: The hypothesis that contemporary organisms are also randomly constructed molecular automata is examined by modeling the gene as a binary (on-off) device and studying the behavior of large, randomly constructed nets of these binary “genes”.
Journal ArticleDOI

Diffusion-limited aggregation, a kinetic critical phenomenon

Abstract: A model for random aggregates is studied by computer simulation The model is applicable to a metal-particle aggregation process whose correlations have been measured previously Density correlations within the model aggregates fall off with distance with a fractional power law, like those of the metal aggregates The radius of gyration of the model aggregates has power-law behavior The model is a limit of a model of dendritic growth