scispace - formally typeset
Journal ArticleDOI

Statistical mechanics of cellular automata

Stephen Wolfram
- 01 Jul 1983 - 
- Vol. 55, Iss: 3, pp 601-644
Reads0
Chats0
TLDR
Analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors.
Abstract
Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of "elementary" cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions \ensuremath{\simeq} 1.59 or \ensuremath{\simeq} 1.69. With "random" initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed.

read more

Citations
More filters
Journal ArticleDOI

The capacity of the Hopfield associative memory

TL;DR: In this paper, the capacity of Hopfield associative memory was studied under the assumption that every one of the m fundamental memories can be recoverable exactly, with the added restriction that all the m original memories be exactly recoverable.
Book

Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction

TL;DR: This book provides an introduction for graduate students and researchers of lattice-gas cellular automata and lattice Boltzmann models for the numerical solution of nonlinear partial differential equations.
Journal ArticleDOI

Universality classes in nonequilibrium lattice systems

TL;DR: In this article, the authors present a review of universality classes in nonequilibrium systems defined on regular lattices and discuss the most important critical exponents and relations, as well as the field-theoretical formalism used in the text.
Journal ArticleDOI

Toward a Quantitative Theory of Self-Generated Complexity

TL;DR: Quantities are defined operationally which qualify as measures of complexity of patterns arising in physical situations, and are essentially Shannon information needed to specify not individual patterns, but either measure-theoretic or algebraic properties of ensembles of pattern arising ina priori translationally invariant situations.
References
More filters
Book

Introduction to Automata Theory, Languages, and Computation

TL;DR: This book is a rigorous exposition of formal languages and models of computation, with an introduction to computational complexity, appropriate for upper-level computer science undergraduates who are comfortable with mathematical arguments.
Journal ArticleDOI

The Chemical Basis of Morphogenesis

TL;DR: In this article, it is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Journal ArticleDOI

On Computable Numbers, with an Application to the Entscheidungsproblem

TL;DR: This chapter discusses the application of the diagonal process of the universal computing machine, which automates the calculation of circle and circle-free numbers.
Journal ArticleDOI

Metabolic stability and epigenesis in randomly constructed genetic nets

TL;DR: The hypothesis that contemporary organisms are also randomly constructed molecular automata is examined by modeling the gene as a binary (on-off) device and studying the behavior of large, randomly constructed nets of these binary “genes”.
Journal ArticleDOI

Diffusion-limited aggregation, a kinetic critical phenomenon

Abstract: A model for random aggregates is studied by computer simulation The model is applicable to a metal-particle aggregation process whose correlations have been measured previously Density correlations within the model aggregates fall off with distance with a fractional power law, like those of the metal aggregates The radius of gyration of the model aggregates has power-law behavior The model is a limit of a model of dendritic growth